

UNIVERSITÀ DEGLI STUDI DEL SANNIO Benevento

DST DIPARTIMENTO DI SCIENZE E TECNOLOGIE

Lab sessions

Applications

- Differential expression
- Promoter analysis
- Master Regulator

Biological Hypothesis supported by in-silico analyses

Biological Hypothesis supported by in-silico analyses

Biological Hypothesis supported by in-silico analyses

In-silico Hypothesis tested in wet Lab

In-silico Hypothesis tested in wet Lab

In-silico Hypothesis tested in wet Lab

Research involving in-silico analysis Integrating wet and dry labs

Build a gene regulatory network active in the context of interest (e.g. using public data)

Interactome

Build a gene regulatory network active in the context of interest (e.g. using public data)

Interactome

Or adopt a known static network (e.g. from STRING)

Build a gene regulatory network active in the context of interest (e.g. using public data)

Interactome

Or adopt a known static network (e.g. from STRING)

Perform a transcriptomic analysis that activate the phenomenon of interest (e.g. differential expr. analysis)

Up regulated

Build a gene regulatory network active in the context of interest (e.g. using public data)

Interactome

Or adopt a known static network (e.g. from STRING)

Perform a transcriptomic analysis that activate the phenomenon of interest (e.g. differential expr. analysis) Down regulated

Up regulated

Build a gene regulatory network active in the context of interest (e.g. using public data)

Interactome

Or adopt a known static network (e.g. from STRING)

Perform a transcriptomic analysis that activate the phenomenon of interest (e.g. differential expr. analysis) Down regulated

Up regulated

Interactome

2

Build a gene regulatory network active in the context of interest (e.g. using public data)

Or adopt a known static network (e.g. from STRING)

> Perform a transcriptomic analysis that activate the phenomenon of interest (e.g. differential expr. analysis)

Collect all Transcription Factor regulons and perform a ranked enrichment analysis with the set of differential expressed genes (e.g. Wilcoxon ranked test)

http://www.massivegenesetstest.org/

Build a gene regulatory network active in the context of interest (e.g. using public data)

Or adopt a known static network (e.g. from STRING)

> Perform a transcriptomic analysis that activate the phenomenon of interest (e.g. differential expr. analysis)

Interactome

Reverse engineering of gene regulatory nets SCENIC

SCENIC is a suite of tools to study and decipher gene regulation (with GENIE3) to infer transcription factors, gene regulatory networks, and cell types from single-cell RNA-seq data or the combination of single-cell RNA-seq data.

Reverse engineering of gene regulatory nets SCENIC

Aibar et al., Nature Methods, 2017

Reverse engineering of gene regulatory nets SCENIC

Reverse engineering of gene regulatory nets SCENIC SCENIC+ Bravo González-Blas et al., preprint bioxiv, 2021

Functional genomics Zscan regulation in Embrionic Stem Cells

OPEN O ACCESS Freely available online

PLOS ONE

Identification of a Novel Gene Signature of ES Cells Self-Renewal Fluctuation through System-Wide Analysis

Luigi Cerulo^{1,2®}, Daniela Tagliaferri^{1,2®}, Pina Marotta¹, Pietro Zoppoli^{1¤}, Filomena Russo¹, Claudia Mazio¹, Mario DeFelice^{1,3}, Michele Ceccarelli^{1,2}*, Geppino Falco^{1,2}*

1 Department of Stem Cell and Development, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy, 2 Department of Science, Università degli Studi del Sannio, Benevento, Italy, 3 Department of Medicina Molecolare e Biotecnologie mediche, Università di Napoli Federico II, Naples, Italy

Functional genomics Zscan regulation in Embrionic Stem Cells

OPEN OCCESS Freely available online

PLOS ONE

Identification of a Novel Gene Signature of ES Cells Self-Renewal Fluctuation through System-Wide Analysis

Luigi Cerulo^{1,2®}, Daniela Tagliaferri^{1,2®}, Pina Marotta¹, Pietro Zoppoli^{1¤}, Filomena Russo¹, Claudia Mazio¹, Mario DeFelice^{1,3}, Michele Ceccarelli^{1,2}*, Geppino Falco^{1,2}*

1 Department of Stem Cell and Development, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy, 2 Department of Science, Università degli Studi del Sannio, Benevento, Italy, 3 Department of Medicina Molecolare e Biotecnologie mediche, Università di Napoli Federico II, Naples, Italy

Functional genomics Zscan regulation in Embrionic Stem Cells

OPEN O ACCESS Freely available online

Identification of a Novel Gene Signature of ES Cells Self-Renewal Fluctuation through System-Wide Analysis

Luigi Cerulo^{1,2®}, Daniela Tagliaferri^{1,2®}, Pina Marotta¹, Pietro Zoppoli^{1¤}, Filomena Russo¹, Claudia Mazio¹, Mario DeFelice^{1,3}, Michele Ceccarelli^{1,2}*, Geppino Falco^{1,2}*

1 Department of Stem Cell and Development, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy, 2 Department of Science, Università degli Studi del Sannio, Benevento, Italy, 3 Department of Medicina Molecolare e Biotecnologie mediche, Università di Napoli Federico II, Naples, Italy

Functional genomics

frontiers in Cell and Developmental Biology

Retinoic Acid Induces Embryonic Stem Cells (ESCs) Transition to 2 Cell-Like State Through a Coordinated Expression of *Dux* and *Duxbl1*

OPEN ACCESS

Edited by: William L. Stanford, Daniela Tagliaferri^{1†}, Pellegrino Mazzone^{1†}, Teresa M. R. Noviello^{1,2†}, Martina Addeo^{1,3}, Tiziana Angrisano³, Luigi Del Vecchio^{4,5}, Feliciano Visconte⁵, Vitalba Ruggieri⁶, Sabino Russi⁶, Antonella Caivano⁶, Irene Cantone⁴, Mario De Felice^{4,7}, Michele Ceccarelli^{1,2}, Luigi Cerulo^{1,2} and Geppino Falco^{1,2,6,7*}

OPEN ACCESS

Functional genomics

frontiers in Cell and Developmental Biology

Retinoic Acid Induces Embryonic Stem Cells (ESCs) Transition to 2 Cell-Like State Through a Coordinated Expression of *Dux* and *Duxbl1*

OPEN ACCESS

Edited by: William L. Stanford, Daniela Tagliaferri^{1†}, Pellegrino Mazzone^{1†}, Teresa M. R. Noviello^{1,2†}, Martina Addeo^{1,3}, Tiziana Angrisano³, Luigi Del Vecchio^{4,5}, Feliciano Visconte⁵, Vitalba Ruggieri⁶, Sabino Russi⁶, Antonella Caivano⁶, Irene Cantone⁴, Mario De Felice^{4,7}, Michele Ceccarelli^{1,2}, Luigi Cerulo^{1,2} and Geppino Falco^{1,2,6,7*}

Applications De novo Motif discovery

A motif is an approximate sequence pattern with no gaps that occurs repeatedly in a group of related sequences.

A motifs can be modelled as position-dependent letter-probability matrices that describe the probability of each possible letter at each position in the pattern.

The input is a group of sequences and the outputs are the most significant motifs occurring in all sequences.

Applications MEME suite

DISCOVERED MOTIFS

MOTIF LOCATIONS

E-value ?	Sites ?	Width ?	More ?	Submit/Download ?
3.7e-033	14	18	ī	>
7.1e-003	4	45	Ī	>
7.4e+000	6	40	Ţ	>

Applications Motif scanning

Motif scanners scan sequences (e.g. promoters) to match known motif represented as position-dependent letter-probability matrices that describe the probability of each possible letter at each position in the pattern.

The input is a group of sequences and a grioput of known motifs the outputs are the most significant motifs found in all sequences.

Applications FIMO motif scanner

DATABASE AND MOTIFS

DATABASE mm9_tss_500bp_sampled_1000.fna Database contains 1000 sequences, 500000 residues

MOTIFS some_vertebrates.meme (DNA)

MOTIF WIDTH BEST POSSIBLE MATCH

MA0108.1	15	GTATAAAAGGCGGGG
UP00093_1	16	TCGACCCCGCCCCTAT
UP00020_1	16	ACGATGACGTCATCGA
UP00002_2	15	CAAAGGCGTGGCCAG
MA0060.1	16	CTCAGCCAATCAGCGC

Random model letter frequencies (--nrdb--): A 0.275 C 0.225 G 0.225 T 0.275

Motif ID	Alt ID	Sequence Name	Strand	Start	End	p-value	q-value	Matched Sequence
MA0060.1	NFYA	chr2	-	60221163	60221178	3.36e-09	0.00195	CTCGGCCAATCAGAGC
MA0060.1	NFYA	chr3	-	54858838	54858853	4.77e-09	0.00195	ATCAGCCAATCAGCGG
UP00093_1	Klf7_primary	chr2	+	172266018	172266033	1.06e-08	0.00496	GCGACCCCGCCCCTTT
UP00093_1	Klf7_primary	chr11	+	65981465	65981480	1.31e-08	0.00496	TTGACCCCGCCCCTCA
UP00020_1	Atf1_primary	chr3	+	65470135	65470150	2.63e-08	0.0222	GCTGTGACGTCACCGC
MA0060.1	NFYA	chrX	+	51925276	51925291	3.55e-08	0.00584	TTCAGCCAATCAGCGC
MA0060.1	NFYA	chrX	+	52016291	52016306	3.55e-08	0.00584	TTCAGCCAATCAGCGC
UP00093_1	Klf7_primary	chr1	+	93302476	93302491	3.87e-08	0.00898	TCGGCCCCGCCCTCC

We would like to test whether Mitochondrial genes in Mouse have TBP binding sequences in their promoter regions (500 bp flank-coding upstream region) With Jaspar (https://jaspar.uio.no) search for TBP PWM matrix and

- download it in MEME format
- 2. With Biomart (<u>https://www.ensembl.org/biomart/martview</u>) download promoter sequences of all genes located in Mouse Mitochondrial chromosome
- regions using previous downloaded data

3. With FIMO (<u>https://meme-suite.org/meme/tools/fimo</u>) search TBP binding

1. With Jaspar (<u>https://jaspar.uio.no</u>) search for TBP PWM matrix and download it in MEME format

3 JASPAR ²⁰²²		≡
🖀 Home		
About	<	TBP Examples: SPI1_P17676_ChIP-seq_Homo_sapie
Q Search		You car specie
Browse JASPAR CORE		Q Browse JASPAR CORE for 6 different taxe
L Unvalidated Profiles		groups
Browse Collections	<	
🖋 Tools	<	Fungi
₩ RESTful API		

 With Jaspar (<u>https://jaspar.uio</u> download it in MEME format

3 JASPAR ²⁰²²		≡				
😭 Home		Example	s: SPI1, P17676	, ChIP-seq, H	omo sapiens	
About	<	9 profil	e(s) found			
Q Search		Display	10 🌲 profile	s		
Browse JASPAR CORE		promes				
Unvalidated Profiles			ID 🔺	Name 🔷	Species 🔶	
Browse Collections	<		MA0108.1	твр		
🗲 Tools	<					
🛱 RESTful API			MA0108.2	твр		
🛓 Download Data						
			MA0386.1	SPT15	Saccharomyces	

1. With Jaspar (https://jaspar.uio.no) search for TBP PWM matrix and

 With Jaspar (<u>https://jaspar.uio</u> download it in MEME format

3 JASPAR ²⁰²²		≡				
😭 Home		Example	s: SPI1, P17676	, ChIP-seq, H	omo sapiens	
About	<	9 profil	e(s) found			
Q Search		Display	10 🌲 profile	s		
Browse JASPAR CORE		promes				
Unvalidated Profiles			ID 🔺	Name 🔷	Species 🔶	
Browse Collections	<		MA0108.1	твр		
🗲 Tools	<					
🛱 RESTful API			MA0108.2	твр		
🛓 Download Data						
			MA0386.1	SPT15	Saccharomyces	

1. With Jaspar (https://jaspar.uio.no) search for TBP PWM matrix and

1. With Jaspar (<u>https://jaspar.uio.no</u>) search for TBP PWM matrix and download it in MEME format

3 JASPAR ²⁰²²		≡		
🖀 Home		Detailed ir	nformation of matrix prof	file MA01
About	۲.	Profile sumr	nary 🙀 Add	Sequ
Q Search		Name:	ТВР	
Browse JASPAR CORE		Matrix ID:	MA0108.2	
A Unvalidated Profiles		Class:	TATA-binding proteins	
Browse Collections	ĸ	Family:	TBP-related factors	
🖋 Tools	ĸ	Collection:	CORE	
🛱 RESTful API		Taxon:	Vertebrates	
-		Species:		
🛓 Download Data		Data Type:		Fre
Matrix Clusters		Validation:	2329577	_
Genome Tracks		Uniprot ID:	P20226	A [
+ Enrichment Analysis		Source:		c[

2. With Biomart (<u>https://www.ensembl.org/biomart/martview</u>) Mitochondrial chromosome

CENSEMBI BLAST/BLAT VEP Tools BioMart Downloads Help & Docs Blog							
New Count Results	URL XML Perl I Help						
Dataset	Ensembl Genes 107						
Mouse genes (GRCm39) Filters	Mouse genes (GRCm39)						
[None selected]							
Attributes Gene stable ID Gene stable ID version Transcript stable ID Transcript stable ID version							

download promoter sequences of all genes located in Mouse

2. With Biomart (<u>https://www.ensembl.org/biomart/martview</u>) Mitochondrial chromosome

CERSEMBI BLAST/BLAT VEP Tools BioMart Downloads Help & Docs Blog						
New Count Results		🖕 URL 💽 XML 🔄 Peri 💿 Help				
Dataset Mouse genes (GRCm39)		Please restrict your query using criteria below (If filter values are truncated in any lists, hover over the list item to				
Filters Chromosome/scaffold: MT Attributes	REGION: Chromosome/scaffold	JH584298.1 JH584299.1				
Gene stable ID Gene stable ID version Transcript stable ID Transcript stable ID version		JH584303.1 JH584304.1 MT X Y				
	Coordinates Start	1				

download promoter sequences of all genes located in Mouse

2. With Biomart (<u>https://www.ensembl.org/biomart/martview</u>) Mitochondrial chromosome

CENSEMBI BLAST/BLAT VEP Tools BioMart Downloads Help & Docs Blog					
🦻 New 📓 Count 📓 Results	🖕 URL 📄 XML				
Dataset Mouse genes (GRCm39)	Please select columns to be inclu Missing non coding genes in your n				
Filters Chromosome/scaffold: MT Attributes	 Features Structures Homologues (Max select 6 orthologues) 				
Flank-coding region (Gene) Gene name Upstream flank [500]	B SEQUENCES: Sequences (max 1)				
Dataset [None Selected]	 Unspliced (Transcript) Unspliced (Gene) Flank (Transcript) Flank (Gene) Flank-coding region (Transcript) Flank-coding region (Gene) 				
	Upstream flank				

download promoter sequences of all genes located in Mouse

ided in the output and hit 'Results' when ready

ext query output, please check the following FAQ

2. With Biomart (<u>https://www.ensembl.org/biomart/martview</u>) Mitochondrial chromosome

Ensembl BLAST	'BLAT VEP Tools BioMart Downloads Help & Docs Blo	g
Dataset Mouse genes (GRCm39) Filters Chromosome/scaffold: MT Attributes Flank-coding region (Gene) Gene name	HEADER INFORMATION: Gene Information Gene stable ID Gene stable ID version Gene description Gene name Source of gene name Chromosome/scaffold name Gene start (bp)	Gene end (bp) Gene type Version (gene) UniParc ID UniProtKB/Swiss-Prot ID UniProtKB/TrEMBL ID
Dataset None Selected]	Transcript Information CDS start (within cDNA) CDS end (within cDNA) 5' UTR start 5' UTR end 3' UTR start 3' UTR start Transcript stable ID Transcript stable ID version Protein stable ID	 Protein stable ID version Transcript type Version (transcript) Version (protein) Strand Transcript start (bp) Transcript end (bp) Transcript length (including UTRs and CDS

download promoter sequences of all genes located in Mouse

2. With Biomart (<u>https://www.ensembl.org/biomart/martview</u>) Mitochondrial chromosome

CENSEMBI BLAST/BLAT VEP Tools BioMart Downloads Help & Docs Blog										
New 🔂 Count The Results										
Dataset	Export all results to	File	0	FASTA 😳	Unique results only	🎯 Go				
Mouse genes (GRCm39) Filters	Email notification to									
Chromosome/scaffold: MT	View	10 🖸 rows as	fasta 💿 🗌 Uni	ique result	ts only					
Flank-coding region (Gene) Gene name Upstream flank [500]	>mt-Nd2 TTATTCTTTATAGCAGAGTACACTAACATTATTCTAATAAACGCCCTAACAACTATTATC TTCCTAGGACCCCTATACTATA									
Dataset	GTCTGATAAAAGAATTACTTTGATAGAGTA AGGACAATAGGAATTGAACCTACACTTAAG	AAATTATAGAGGTT GAATTCAAAATTCT	CAAGCCCTCTT	ATTTCT AAACAC						
[None Selected]	GTCTGATAAAAGAATTACTTTGATAGAGTAAATTATAGAGGTTCAAGCCCTCTTATTTCT AGGACAATAGGAATTGAACCTACACTTAAGAATTCAAAATTCTCCGTGCTACCTAAACAC CTTATCCTAATAGTAAGGTCAGCTAATTAAGCTATCGGGCCCATACCCCGAAAACGTTGG TTTAAATCCTTCCCGTACTA >mt-Tm Sequence unavailable >mt-Tw Sequence unavailable >mt-Col TCCAACCAACAATAACTCAAAAATAATAACTCACCAAACAAAAACTAAACCCAACCTAAT ATTTTCCACCCTAGCTATCATAAGCACAATAACCCTACCCTAGCCCCCCAACTAATTAC									

download promoter sequences of all genes located in Mouse

binding regions using previous downloaded data

3. With FIMO (<u>https://meme-suite.org/meme/tools/fimo</u>) search TBP

FIMO scans a set of sequences for individual matches to each of the motifs you provide (sample output for motifs and sequences). See this Manual or this Tutorial for more information.

DNA ? Improved

binding regions using previous downloaded data

MEME Suite 5.5.0

Motif Discovery

Motif Enrichment

Motif Scanning

Motif Comparison

Gene Regulation

Utilities

Manual

Guides & Tutorials

Sample Outputs

File Format Reference

► Databases

Download & Install

► Help

Your FIMO job is complete. The results should be displayed below.

Job Details ...

Results

- FIMO HTML output
- FIMO TSV output
- FIMO XML output
- FIMO CISML output
- FIMO GFF output
- Input Motifs
- Uploaded Sequences

Status Messages

- Parsing arguments
- Arguments ok
- Starting fimo

3. With FIMO (<u>https://meme-suite.org/meme/tools/fimo</u>) search TBP

3. With FIMO (<u>https://meme-suite.org/meme/tools/fimo</u>) search TBP binding regions using previous downloaded data

DATABASE AND MOTIFS

DATABASE mart export-2.txt Database contains 13 sequences, 6500 residues

MOTIFS MA0108.2.meme (DNA)

MOTIF WIDTH BEST POSSIBLE MATCH MA0108.2 15 GTATAAAAGGCGGGG

Random model letter frequencies (--nrdb--): A 0.275 C 0.225 G 0.225 T 0.275

SECTION I: HIGH-SCORING MOTIF OCCURENCES

- motif.
- The q-value of a motif occurrence is defined as the false discovery rate if the occurrence is accepted as significant.
- The table is sorted by increasing *p*-value.

Motif ID	Alt ID	Sequence Name	Strand	Start	End	p-value	q-value	Matched S
MA0108.2	TBP	mt-Nd6	+	39	53	4.73e-05	0.485	СТАТАААТ

• There were 1 motif occurrences with a p-value less than 0.0001. The full set of motif occurrences can be seen in the TSV (tab-delimited values) output file fimo.tsv, the GFF3 file fimo.gff which may be suitable for uploading to the UCSC Genome Table Browser (assuming the FASTA input sequences included genomic coordinates in UCSC or Galaxy format), or the XML file fimo.xml. • The *p*-value of a motif occurrence is defined as the probability of a random sequence of the same length as the motif matching that position of the sequence with as good or better a score. • The score for the match of a position in a sequence to a motif is computed by summing the appropriate entries from each column of the position-dependent scoring matrix that represents the

equence
GCTGTGG

genes are regulated by a common Transcription Factor.

- 1. With Biomart download the upstream flank-coded sequences (1500 bp upstream) of those genes
- 2. With FIMO perform a promote analysis scanning all available motifs in S.Cerevisiae downloaded from Jaspar
- 3. Analyse results in Excel making convincing conclusions

Some studies revealed that DAL1, DAL2, DAL4, DAL5, DAL7, DAL80, and GAP1 are strongly co-expressed in S.Cerevisiae in more than 200 different conditions (Allocco et al., 2004). It could be the case that those

Limited to probes on Array

Limited by cost

		Array1 🍦	Array2 🍦	Array3 🗦	Array4 🏻 瞕	Array5 🏻 🗘	Array6 🍦
	1007_s_at	9.347249	9.568875	9.820663	11.066680	11.007247	10.792517
	1053_at	8.700141	8.965633	8.847094	9.049528	9.064799	8.750276
	117_at	5.800838	5.776382	5.795153	5.048881	5.246541	5.306622
	121_at	7.214928	7.376463	7.379221	8.056964	8.018169	7.836705
geni	1255_g_at	2.543790	2.637345	2.625955	2.614629	2.982887	2.584014
	1294_at	6.099539	6.201490	6.424293	6.450105	6.318168	6.049103
	1316_at	6.186417	6.114881	5.901316	6.172999	6.109812	5.739915
	1320_at	4.334868	4.668779	4.650498	5.075092	5.192537	5.244987
	1405_i_at	3.339094	3.189086	3.679687	8.734428	8.535258	7.914109
l l				-			

Controllo Array 6 Array 4 Array 5

1. Normalizzare i dati

2. Quantificare la differenza di espressione di ciascun gene tra le diverse condizioni

		Array1 🍦	Array2 🍦	Array3 🗦	Array4 🏻 🇘	Array5 🗦	Array6 🎈
	1007_s_at	9.347249	9.568875	9.820663	11.066680	11.007247	10.792517
	1053_at	8.700141	8.965633	8.847094	9.049528	9.064799	8.750276
	117_at	5.800838	5.776382	5.795153	5.048881	5.246541	5.306622
	121_at	7.214928	7.376463	7.379221	8.056964	8.018169	7.836705
geni	1255_g_at	2.543790	2.637345	2.625955	2.614629	2.982887	2.584014
	1294_at	6.099539	6.201490	6.424293	6.450105	6.318168	6.049103
	1316_at	6.186417	6.114881	5.901316	6.172999	6.109812	5.739915
	1320_at	4.334868	4.668779	4.650498	5.075092	5.192537	5.244987
	1405_i_at	3.339094	3.189086	3.679687	8.734428	8.535258	7.914109

2. Quantificare la differenza di espressione di ciascun gene tra le diverse condizioni

			Tumore		Controllo			
				****	1. *****		****	
		Array1 🍦	Array2 🍦	Array3 🗧	Array4 🛛 🗘	Array5 🍦	Array6 🗘	
	1007_s_at	9.347249	9.568875	9.820663	11.066680	11.007247	10.792517	
	1053_at	8.700141	8.965633	8.847094	9.049528	9.064799	8.750276	
	117_at	5.800838	5.776382	5.795153	5.048881	5.246541	5.306622	
•	121_at	7.214928	7.376463	7.379221	8.056964	8.018169	7.836705	
geni	1255_g_at	2.543790	2.637345	2.625955	2.614629	2.982887	2.584014	
	1294_at	6.099539	6.201490	6.424293	6.450105	6.318168	6.049103	
	1316_at	6.186417	6.114881	5.901316	6.172999	6.109812	5.739915	
	1320_at	4.334868	4.668779	4.650498	5.075092	5.192537	5.244987	
	1405_i_at	3.339094	3.189086	3.679687	8.734428	8.535258	7.914109	
		****			***			

			Tumore		Controllo			
			•••••	****			***	
		Array1 🍦	Array2 🍦	Array3 🗧	Array4 🏻 🗘	Array5 🗦	Array6	
	1007_s_at	9.347249	9.568875	9.820663	11.066680	11.007247	10.79251	
	1053_at	8.700141	8.965633	8.847094	9.049528	9.064799	8.75027	
	117_at	5.800838	5.776382	5.795153	5.048881	5.246541	5.30662	
	121_at	7.214928	7.376463	7.379221	8.056964	8.018169	7.83670	
geni	1255_g_at	2.543790	2.637345	2.625955	2.614629	2.982887	2.58401	
	1294_at	6.099539	6.201490	6.424293	6.450105	6.318168	6.04910	
	1316_at	6.186417	6.114881	5.901316	6.172999	6.109812	5.73991	
	1320_at	4.334868	4.668779	4.650498	5.075092	5.192537	5.24498	
	1405_i_at	3.339094	3.189086	3.679687	8.734428	8.535258	7.91410	
		****			****			

logFC > 1 gene up-regolato nel Tumore
logFC < -1 gene down-regolato nel Tumore</pre>

Calcolo del Fold Change e del p-Value per identificare

Calcolo del Fold Change e del p-Value per identificare

Visualizzazione dei risultati

	Array1 🍦	Array2 🔅	Array3 🗦	Array4 🗦	Array5 🔅	Array6 🗘
1007_s_at	9.347249	9.568875	9.820663	11.066680	11.007247	10.792517
1053_at	8.700141	8.965633	8.847094	9.049528	9.064799	8.750276
117_at	5.800838	5.776382	5.795153	5.048881	5.246541	5.306622
121_at	7.214928	7.376463	7.379221	8.056964	8.018169	7.836705
1255_g_at	2.543790	2.637345	2.625955	2.614629	2.982887	2.584014
1294_at	6.099539	6.201490	6.424293	6.450105	6.318168	6.049103
1316_at	6.186417	6.114881	5.901316	6.172999	6.109812	5.739915
1320_at	4.334868	4.668779	4.650498	5.075092	5.192537	5.244987
1405_i_at	3.339094	3.189086	3.679687	8.734428	8.535258	7.914109

Heatmap: una rappresentazione grafica dei dati dove ogni singolo valore nella matrice di espressione è rappresentato da un colore in una scala di colori (es dal giallo al rosso)

=MEDIA(num1; num2; num3; ...)

Probe.id	trattato1	trattato2	trattato3	controllo1	controllo2	controllo3	mean exp trattato	mean exp contro
1415670_at	10.32095475	10.3348446	10.32643855	10.0755224	10.103059	10.15155883		
1415671_at	11.55659724	11.21470877	11.6095877	11.33865796	11.33715745	11.47039553		
1415672_at	11.54761726	11.57386469	11.44209389	11.44663589	11.58652392	11.52606895		
1415673_at	9.92847925	7.720741249	7.620332624	7.817102331	8.009357375	7.837974306		
1415674_a_at	10.88265313	10.61796162	10.66808788	10.56361125	10.71527994	10.55999493		
1415675_at	9.733159903	9.807113078	10.03279695	9.858790847	10.03756243	10.00587701		
1415676_a_at	12.2327371	12.08600143	12.39492531	12.12988021	12.15886086	12.09462057		
1415677_at	8.494620928	7.57074354	8.532571262	7.877672468	8.006344756	7.969195083		
1415678_at	10.78227494	10.5624431	10.86456977	10.3011318	10.40717798	10.50016997		
1415679_at	11.69570084	11.63114164	11.67969986	11.60829637	11.6649613	11.64915692		
1415680_at	10.90050271	10.99138343	10.77633482	10.81999107	11.03762005	11.01180531		
1415681_at	10.85069521	11.06834829	10.98970299	10.84059181	10.94414474	10.87226999		
1415682_at	9.556735053	9.315819843	9.64109681	8.307379153	8.426017105	8.541887088		
1415683_at	11.59546026	11.73032524	11.44292373	11.55537457	11.76600437	11.65426006		
1415684_at	8.869762455	8.655886981	9.097590276	8.651620784	9.016728456	8.909072845		

	А	В	С	D	E	F	G	Н	Ι
1	Probe.id	trattato1	trattato2	trattato3	controllo1	controllo2	controllo3	mean exp trattato	mean exp controllo
2	1415670_at	10.32095475	10.3348446	10.32643855	10.0755224	10.103059	10.15155883	=MEDIA(<mark>B2:D2</mark>)	
3	1415671_at	11.55659724	11.21470877	11.6095877	11.33865796	11.33715745	11.47039553	MEDIA(num1; [num2]	;)
4	1415672_at	11.54761726	11.57386469	11.44209389	11.44663589	11.58652392	11.52606895		
5	1415673_at	9.92847925	7.720741249	7.620332624	7.817102331	8.009357375	7.837974306		
6	1415674_a_at	10.88265313	10.61796162	10.66808788	10.56361125	10.71527994	10.55999493		
7	1415675_at	9.733159903	9.807113078	10.03279695	9.858790847	10.03756243	10.00587701		

	Α	В	С	D	E	F	G	Н	I	
1	Probe.id	trattato1	trattato2	trattato3	controllo1	controllo2	controllo3	mean exp trattato	mean exp controllo	
2	1415670_at	10.32095475	10.3348446	10.32643855	10.0755224	10.103059	10.15155883	10.32741263	=MEDIA(<mark>E2:G2</mark>)	
3	1415671_at	11.55659724	11.21470877	11.6095877	11.33865796	11.33715745	11.47039553			
4	1415672_at	11.54761726	11.57386469	11.44209389	11.44663589	11.58652392	11.52606895			
5	1415673_at	9.92847925	7.720741249	7.620332624	7.817102331	8.009357375	7.837974306			
6	1415674_a_at	10.88265313	10.61796162	10.66808788	10.56361125	10.71527994	10.55999493			
7	1415675_at	9.733159903	9.807113078	10.03279695	9.858790847	10.03756243	10.00587701			
8	1415676_a_at	12.2327371	12.08600143	12.39492531	12.12988021	12.15886086	12.09462057			

	Α	В	С	D	E	F	G	Н	I	J
1	Probe.id	trattato1	trattato2	trattato3	controllo1	controllo2	controllo3	mean exp trattato	mean exp controllo	Fold chang
2	1415670_at	10.32095475	10.3348446	10.32643855	10.0755224	10.103059	10.15155883	10.32741263	10.11004674	=H2-I2
3	1415671_at	11.55659724	11.21470877	11.6095877	11.33865796	11.33715745	11.47039553	11.4602979	11.38207031	
4	1415672_at	11.54761726	11.57386469	11.44209389	11.44663589	11.58652392	11.52606895	11.52119195	11.51974292	
5	1415673_at	9.92847925	7.720741249	7.620332624	7.817102331	8.009357375	7.837974306	8.423184375	7.888144671	
6	1415674_a_at	10.88265313	10.61796162	10.66808788	10.56361125	10.71527994	10.55999493	10.72290088	10.61296204	
7	1415675_at	9.733159903	9.807113078	10.03279695	9.858790847	10.03756243	10.00587701	9.857689977	9.967410096	
8	1415676_a_at	12.2327371	12.08600143	12.39492531	12.12988021	12.15886086	12.09462057	12.23788795	12.12778722	
9	1415677_at	8.494620928	7.57074354	8.532571262	7.877672468	8.006344756	7.969195083	8.19931191	7.951070769	
10	1415678_at	10.78227494	10.5624431	10.86456977	10.3011318	10.40717798	10.50016997	10.73642927	10.40282659	

	Α	В	С	D	E	F	G	Н	Ι	J	К	L	М
1	Probe.id	trattato1	trattato2	trattato3	controllo1	controllo2	controllo3	mean exp trattato	mean exp controllo	Fold change	pValue		
2	1415670_at	10.32095475	10.3348446	10.32643855	10.0755224	10.103059	10.15155883	10.32741263	10.11004674	0.217365888	=TESTT(<mark>B2:D</mark> 2	2)	
3	1415671_at	11.55659724	11.21470877	11.6095877	11.33865796	11.33715745	11.47039553	11.4602979	11.38207031	0.07822759	TESTT(matri	ce1; matrice2;	coda; tipo)
4	1415672_at	11.54761726	11.57386469	11.44209389	11.44663589	11.58652392	11.52606895	11.52119195	11.51974292	0.001449029			
5	1415673_at	9.92847925	7.720741249	7.620332624	7.817102331	8.009357375	7.837974306	8.423184375	7.888144671	0.535039704			
6	1415674_a_at	10.88265313	10.61796162	10.66808788	10.56361125	10.71527994	10.55999493	10.72290088	10.61296204	0.109938836			

	A	В	С	D	E	F	G	Н	Ι	J	К	L	М
1	Probe.id	trattato1	trattato2	trattato3	controllo1	controllo2	controllo3	mean exp trattato	mean exp controllo	Fold change	pValue		
2	1415670_at	10.32095475	10.3348446	10.32643855	10.0755224	10.103059	10.15155883	10.32741263	10.11004674	0.217365888	=TESTT(B2:D2	2; E2:G2)	
3	1415671_at	11.55659724	11.21470877	11.6095877	11.33865796	11.33715745	11.47039553	11.4602979	11.38207031	0.07822759	TESTT (matri	ce1; matrice2;	; coda; tipo)
4	1415672_at	11.54761726	11.57386469	11.44209389	11.44663589	11.58652392	11.52606895	11.52119195	11.51974292	0.001449029			
5	1415673_at	9.92847925	7.720741249	7.620332624	7.817102331	8.009357375	7.837974306	8.423184375	7.888144671	0.535039704			
6	1415674_a_at	10.88265313	10.61796162	10.66808788	10.56361125	10.71527994	10.55999493	10.72290088	10.61296204	0.109938836			

	А	В	С	D	E	F	G	Н	Ι	J	К	L	М
1	Probe.id	trattato1	trattato2	trattato3	controllo1	controllo2	controllo3	mean exp trattato	mean exp controllo	Fold change	pValue		
2	1415670_at	10.32095475	10.3348446	10.32643855	10.0755224	10.103059	10.15155883	10.32741263	10.11004674	0.217365888	=TESTT(B2:D2	; <mark>E2:G2</mark> ; 2; 3)	
3	1415671_at	11.55659724	11.21470877	11.6095877	11.33865796	11.33715745	11.47039553	11.4602979	11.38207031	0.07822759	TESTT(matric	ce1; <u>matrice2;</u>	coda; <u>tipo</u>)
4	1415672_at	11.54761726	11.57386469	11.44209389	11.44663589	11.58652392	11.52606895	11.52119195	11.51974292	0.001449029			
5	1415673_at	9.92847925	7.720741249	7.620332624	7.817102331	8.009357375	7.837974306	8.423184375	7.888144671	0.535039704			
6	1415674_a_at	10.88265313	10.61796162	10.66808788	10.56361125	10.71527994	10.55999493	10.72290088	10.61296204	0.109938836			

	ľ
	ŀ
1	ŀ
	ļ
	ŀ
	l
	ŀ
_	

Applications **Exercise 1 - differential expression analysis**

cells in which Xbp1 is over-expressed compared to control cells. Four replicates were conducted for each of the two treatments

- 1. How many genes are upregulated? And how many genes are downregulated? Generate the plots of the differentially expressed genes in the two conditions.
- 2. With FIMO (https://meme-suite.org/meme/tools/fimo) find among the up genes which is directly regulated by Xbp1

The Transcription factor Xbp1 was over-expressed in the mouse adipocyte cell line F442A through adenoviral infection. A microarray experiment (GEO series GSE46178) was performed to compare gene expression profiles in

Applications Exercise 1 - differential expression analysis

Applications **Exercise 3 - Master Regulator analysis**

- (Mouse regulons provided from STRING)

1. Perform a Master regulator off the previous exercise (GEO series GSE46178) to find top regulator mechanism altered by Id2 knockout

2. Get insights about top regulators with https://www.genecards.org

Applications **Exercise 3 - differential expression analysis and Master Regulator**

retina with RPE attached consisting of ten samples each at 52hpf consisting of ten retinas each at 52hpf (WR52).

- 1. Analyse the dataset performing a Master Regulator Analysis (Danio Rerio regulons file provided from STRING)
- 2. Get insights about top regulators with <u>https://www.genecards.org</u>

Eye development and photoreceptor maintenance requires the retinal pigment epithelium (RPE), a thin layer of cells that underlies the neural retina (GEO series GSE5048). Three independent replicates of Zebrafish (WRR52) were compared with three independent pure retinal samples