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• Cell function and regulation depend 
on transient interactions among 
thousands of different 
macromolecules in the cell.


• It is necessary a systemic approach 
to understand how the cell is 
organized and how genes and 
proteins interact 
(Ludwig von Bertalanffy, 1934)

The complexity of living 
things
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Model induction
Numbers may lie



A photograph of the Sun taken at the same time every day for a year will 
yield the visual pattern seen here, known as analemma
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What we know about gene regulation?



• Cells share the same DNA but 
different cell types synthesise 
different sets of RNAs and 
proteins


• Many processes are common to 
all cells and many other are 
specific for each cell type


• Moreover, external signals can 
cause a cell to change the 
expression of its genes

S. Djebali et al., Nature 489:101-109, 2012

Regulation of gene expression



Regulation of gene expression

Gene Expression Can Be Regulated at Many of the Steps in the 
Pathway from DNA to RNA to Protein. How can this occur?



Transcriptional control
Transcription regulators

Recognize specific sequences of DNA 
(typically 5-12 nucleotides)

Approximately 10% of protein coding genes 
are devoted to transcription regulators



Transcriptional control
Transcription regulators

Genes can be switched OFF by repressor 
proteins (e.g. tryptophan in E.coli)



Transcriptional control
Transcription regulators

Genes can be switched ON by activator 
proteins



Transcriptional control
Transcription regulators

Lac operon in E.coli is controlled by two 
transcription regulators, causing it to be 
expressed only when needed,

i.e. lactose present AND  
glucose absent



Transcriptional control
Transcription regulators

Eukaryotic gene control region 
includes many cis-regulatory 
sequences allowing transcription 
regulators to work in groups as co-
activators and co-repressors.

Co-activators an co-repressors can 
acts in a variety numbers of ways
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strategy in Cell Regulation
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Negative feedback is a powerful 
strategy in Cell Regulation

No feedback

With negative feedback
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Delayed negative feedback can induce 
oscillations
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Positive feedback is important for 
switch-like responses and bistability



Mathematically analysis of cell function

Positive feedback is important for 
switch-like responses and bistability

Nullcline of Y

Nullcline of X
Stable 

points



Mathematically analysis of cell function

E.g. an artificial bistable system in E. 
coli. (Gardner et al., Nature, 2000)

LacI represses the expression of TetR 
(and GFP, used as a reporter of the 
status of tetR transcription), and TetR 
represses the expression of LacI

The system could toggle between the 
TetR-off and TetR-on states by the 
addition of external trigger stimuli
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Incoherent feed-forward loops generates pulses
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Incoherent feed-forward loops generates pulses

CAP
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Mathematically analysis of cell function

Coherent feed-forward detects persistent inputs ignoring random 
fluctuations



Mathematically analysis of cell function

Transcription regulators can exert combinatorial control



Genetic circuits

Par of the genetic circuit of the sea urchin developing embryo, (E.H. Davidson, Nature 474:635-639, 2011)



Genetic circuits

Par of the genetic circuit of the sea urchin developing embryo, (E.H. Davidson, Nature 474:635-639, 2011)

Digital electronics circuits
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In vitro models accurately identify in vivo bound sequences
We next evaluated DeepBind’s performance using 506 in vivo 
ENCODE ChIP-seq data sets, which were preprocessed to remove 
protocol and laboratory biases26 (Supplementary Table 4). Unlike 
experiments with in vitro data, these experiments were influenced 
by cell type–specific effects, transcription factor-nucleosome interac-
tions, cooperation and competition between transcription factors and 
other cofactors, and pioneer transcription factors that can remodel 
chromatin and facilitate the binding of other transcription factors27. 

To train DeepBind, we used as positives the 101-bp sequences centered  
at the point source called for each peak, and we used shuffled posi-
tive sequences with matching dinucleotide composition as negatives 
(same as ENCODE’s analysis27; Supplementary Notes, sec. 3).

For computational reasons, most existing methods analyze only 
the top few hundred peaks from among tens of thousands of peaks 
(the median number of peaks for ENCODE is ~17,000). However, 
Wang et al.27 found that, for example, ~16,000 of the top ~20,000 SPI1 
peaks contain the SPI1 motif. For each data set, DeepBind was able to 
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Figure 4 Analysis of potentially disease-causing genomic variants. DeepBind mutation maps (Supplementary Notes, sec. 10.1) were used to understand 
disease-causing SNVs associated with transcription factor binding. (a) A disrupted SP1 binding site in the LDL-R promoter that leads to familial 
hypercholesterolemia. (b) A cancer risk variant in a MYC enhancer weakens a TCF7L2 binding site. (c) A gained GATA1 binding site that disrupts  
the original globin cluster promoters. (d) A lost GATA4 binding site in the BCL-2 promoter, potentially playing a role in ovarian granulosa cell tumors.  
(e) Loss of two potential RFX3 binding sites leads to abnormal cortical development. (f,g) HGMD SNVs disrupt several transcription factor binding  
sites in the promoters of HBB and F7, potentially leading to B-thalassemia and hemophilia, respectively. (h) Gained GABP-A binding sites in  
the TERT promoter, which are linked to several types of aggressive cancer. WT, wild type.

Alipanahi et al., Nature 33, 831–838, 2015
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(e) Loss of two potential RFX3 binding sites leads to abnormal cortical development. (f,g) HGMD SNVs disrupt several transcription factor binding  
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the TERT promoter, which are linked to several types of aggressive cancer. WT, wild type.

Alipanahi et al., Nature 33, 831–838, 2015
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4 Nguyen et al.

Figure 1. The overall workflow of GRN inference methods. The methods start with filtering genes based on their variability or a priori knowledge. They next construct
intermediate data depending on the modeling and data assumption and then infer the network. The output of these methods can be either co-expression networks
which are undirected from top selected connections or directed networks with regulatory relationships between genes. To evaluate the constructed networks, each
method adopts different validation techniques, including using simulation, enrichment analysis, literature support, and expert interpretation and conducting additional
laboratory experiments.

Tools that come with C++ components need to be compiled.
Among the 15 methods, three are provided as Matlab scripts.
Note that while R, Python, Julia and C++ are open-source and
can be freely downloaded for most operation systems, Matlab
usually requires an expensive license.

Among the 15 methods, only SCNS provides a web-based
interface. The interface is simple and only provides handy tools
for selecting the input, viewing and visualizing the output. It
uses Adobe Flash to visualize the network. Since Adobe Flash
is deprecated, the software may not be able to function in the
near future. The remaining 14 tools are provided in the form of
stand-alone package or executable scripts that can be run on the
command line. The three methods, Boolean Pseudotime, SCODE
and SCOUP, provide a command-line interface for users to per-
form analysis. Although it is convenient to perform an analysis
using these tools, combining these with other packages might
require additional implementations to make it work smoothly
between different environments. Inference Snapshot is the only
method that performs its analysis using a mixture of scripts
using multiple programming languages. In order to complete an
analysis, users have to switch from Matlab to C++ to complete
their analysis. In addition, this method hardcodes the input and
parameters, i.e. users have to modify the code to change the
name of the input file or to change any parameters.

We also provide ratings for the usability of the surveyed tools.
For each method, we provide a score for each of the following
categories: (i) tutorial, (ii) documentation, (iii) code quality, (iv)
user-friendliness and (v) completion rate. First, we check if the
authors provide a detailed and easy-to-follow tutorial for their
tool. Boolean Pseudotime, BTR, SCNS, SCODE, SINCERA, SCENIC
and SCIMITAR are the best in providing high-quality tutorials,
whereas Inference Snapshot, Empirical Bayes, Information Mea-
sures, SINCERITIES and SCINGE provide only short scripts as
examples of how to perform the analysis. Second, we check if
each of the functions and parameters is correctly documented
with details. Methods distributed as R packages (BTR, NLNET,
SINCERA, SCENIC and LEAP) provide the most detailed documen-
tation. In contrast, Inference Snapshot and SCIMITAR provide
only minimum comments on function parameters. Third, we
assess the quality of the code regarding its structure, testability
(e.g. unit test), compatibility (with different operation systems,
dependencies, compilers) and reliability (how frequent the soft-
ware crashes). Methods that are bundled as packages can be
installed easily (Boolean Pseudotime, Empirical Bayes, Informa-
tion Measures, NLNET, SINCERA and SCENIC). In contrast, SCNS,
SCIMITAR and SCINGE provide executable files and scripts that

require users to manually resolve conflicted and missing depen-
dencies. Inference Snapshot even requires users to compile C++
and to switch between command-line and Matlab environment
to finish an analysis. This method is not included in our per-
formance assessment because we were not able to execute any
analysis.

Fourth, we assess how easy it is for the users to perform an
analysis using their own data, e.g. preparing the input expression
and creating additional required inputs. For Boolean Pseudotime,
BTR, SCODE, Information Measures, NLNET, SINCERA and LEAP,
users can easily provide the expression matrix as input. In con-
trast, SCINGE requires users to prepare data in specific formats
while SCOUP requires users to compute the summary statistics
of the distribution of each gene (mean and variance). Finally, we
assess the methods based on completion rate using 139 datasets
from our simulation studies with varying numbers of genes
(20 to 3000), samples (200 to 1000) and sparsity levels (30–90%).
SCODE, SCENIC and LEAP are the only methods that have 100%
completion rate. We were not able to finish any analysis using
Inference Snapshot. Among the 14 methods tested, BTR has the
lowest completion rate (27%) since it cannot finish analyses with
more than 30 genes. The overall usability score of each method
is shown in the last column of Table 1. SCODE, Information Mea-
sures, NLNET, SCENIC and LEAP have the highest overall usability
rating (5/5), whereas Inference Snapshot (1/5), SCIMITAR (2/5)
and SCINGE (2/5) have the lowest rating. Supplementary Table S1
provides more details about the usability of each method while
Supplementary Table S2 provides the input and workflow.

Methods
In general, GRN inference methods aim at capturing the network
dynamics that explain the underlying regulatory states in dif-
ferent cellular compartments and conditions. Each GRN infer-
ence model follows an explicit assumption about the regulatory
dynamics that can be observed through the changes in expres-
sion data. The overall workflow of GRN inference methods is pre-
sented in Figure 1. The input includes a scRNA-seq expression
matrix in which rows represent genes and columns represent
cells (or vice versa). Due to computational limitation, all GRN
methods start with a gene filtering step, which narrows the
analysis to genes with high variability or genes that are of users’
interest (pre-defined genes). Depending on the assumption of
the regulatory dynamics and the inference technique used, the
filtered data are then transformed into necessary structure/
format, such as binary values (boolean model), pseudo-time

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/3/bbaa190/5904505 by guest on 09 O

ctober 2022

Nguyen  et al., Briefing in bioinformatics, 2020
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Smet and Marchal, Nature Reviews Microbiology, 2010
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Query-driven

Global

Optimization strategy 
A strategy used to screen  
the search space so that the 
optimal (or almost optimal) 
solution can be found without 
having to evaluate all possible 
solutions.

A second strategy relates to extending the expression 
data with other available information. Integrative meth-
ods combine the expression data with complementary 
data describing the TRN from a different angle, such as 
chromatin immunoprecipitation-on-chip (ChIP-chip) 
data or motif data, and these methods often obtain more 
reliable interactions and a more complete picture of the 

network. Moreover, during the search, prioritizing pre-
dictions for which the independent data sources agree 
allows the search space to be traversed more efficiently.

As a third strategy, query-driven methods reduce the 
search space by intentionally restricting the number of 
interactions that needs to be evaluated: instead of search-
ing for a global pattern, as global inference methods do, 
query-driven methods concentrate their search on a pre-
defined set of core genes or on a subnetwork of interest, 
and they then expand on this core gene set or subnetwork 
given the available data.

A fourth strategy is to use supervised (and semi-
supervised) methods, which treat network inference 
as a classification problem and can be considered to be  
a specific way of exploiting known information in a 
query-driven manner.

As each strategy uses different assumptions and poses 
different constraints, the specific strategy or combina-
tion of strategies that are adopted determine the type 
of interactions that can be found. This is shown below, 
using results obtained from state-of-the-art inference 
tools that have successfully been applied to microbial 
data sets. For an algorithmic description of the inference 
tools mentioned below, see BOXES 2,3.

Module-based versus direct network inference. Usually, 
a biclustering method is used for module inference24. 
Most module-based network inference methods also use 
module inference based on biclustering as a first step, 
before the assignment of the transcriptional programme. 
Exploiting the concept of modularity offers advantages 
from both the biological and the statistical points of 
view. Most module-based approaches not only predict 
regulatory interactions, but also identify the experimen-
tal conditions under which the predicted interactions 
take place. This information can be helpful for design-
ing the appropriate conditions under which experi-
mental validation of the predicted interactions should 
be performed8,25. Assuming that modularity exists also 
contributes to the statistical robustness of the inferred 
interactions: each of the co-expressed genes in a module 
confirm the data for the other genes in that module by 
providing evidence for a certain regulatory programme, 
whereas for direct methods the evidence for a particular  
regulator–target interaction is based on only a single-gene 
observation.

A comparison of the results from the direct net-
work inference method CLR (context likelihood of 
relatedness) and the module-based method Stochastic 
LeMoNe (learning module networks) shows how adopt-
ing the concept of modularity determines the interac-
tions that can be inferred (BOX 2; FIG. 2). By exploiting 
modularity, LeMoNe and related methods26 can assign 
regulators with expression profiles that are less similar 
to those of their target genes than is the case with CLR 
or similar methods27,28. Indeed, LeMoNe performs bet-
ter than CLR at inferring regulatory programmes for 
genes that are grouped in coarse-grained modules which 
correspond to larger pathways (for example, Fis, RNA 
polymerase σ-factor S (RpoS) and PurR) and for which 
the genes show an overall low degree of co-expression 

Figure 1 | Categorization of different state-of-the-art methods for module and 
network inference. Module inference methods search for sets of co-expressed genes. 
The major goal of network inference (NI) methods, on the other hand, is to search for a 
regulatory programme that explains an observed expression behaviour. NI methods can 
be categorized according to the strategies that they use to cope with the problem of 
underdetermination. Direct NI methods consider all genes on an individual basis, 
whereas module-based NI methods conceptualize the network by treating sets  
of co-expressed genes as single entities (modules). NI and module interference  
methods can be further divided according to whether they complement expression  
data with additional data sources (integrative methods) or use expression data only 
(non-integrative methods). Supervised and semi-supervised methods treat the inference 
problem as a classification problem, whereas unsupervised methods do not. The output 
of the methods can be global, indicating that they search for global patterns in the data, 
or query-driven, starting from a predefined set of core genes or core pathways and 
expanding on those. Most of the available programs can be used in either a query-driven 
or a global mode. The methods indicated in pink are specifically designed to be query 
driven. CLR, context likelihood of relatedness; COALESCE, combinatorial algorithm for 
expression- and sequence-based cluster extraction; DISTILLER, data integration system 
to identify links in expression regulation; GPS, gene promoter scan; LeMoNe, learning 
module networks; SEREND, semi-supervised regulatory-network discoverer; SIRENE, 
supervised inference of regulatory networks.
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A second strategy relates to extending the expression 
data with other available information. Integrative meth-
ods combine the expression data with complementary 
data describing the TRN from a different angle, such as 
chromatin immunoprecipitation-on-chip (ChIP-chip) 
data or motif data, and these methods often obtain more 
reliable interactions and a more complete picture of the 

network. Moreover, during the search, prioritizing pre-
dictions for which the independent data sources agree 
allows the search space to be traversed more efficiently.

As a third strategy, query-driven methods reduce the 
search space by intentionally restricting the number of 
interactions that needs to be evaluated: instead of search-
ing for a global pattern, as global inference methods do, 
query-driven methods concentrate their search on a pre-
defined set of core genes or on a subnetwork of interest, 
and they then expand on this core gene set or subnetwork 
given the available data.

A fourth strategy is to use supervised (and semi-
supervised) methods, which treat network inference 
as a classification problem and can be considered to be  
a specific way of exploiting known information in a 
query-driven manner.

As each strategy uses different assumptions and poses 
different constraints, the specific strategy or combina-
tion of strategies that are adopted determine the type 
of interactions that can be found. This is shown below, 
using results obtained from state-of-the-art inference 
tools that have successfully been applied to microbial 
data sets. For an algorithmic description of the inference 
tools mentioned below, see BOXES 2,3.

Module-based versus direct network inference. Usually, 
a biclustering method is used for module inference24. 
Most module-based network inference methods also use 
module inference based on biclustering as a first step, 
before the assignment of the transcriptional programme. 
Exploiting the concept of modularity offers advantages 
from both the biological and the statistical points of 
view. Most module-based approaches not only predict 
regulatory interactions, but also identify the experimen-
tal conditions under which the predicted interactions 
take place. This information can be helpful for design-
ing the appropriate conditions under which experi-
mental validation of the predicted interactions should 
be performed8,25. Assuming that modularity exists also 
contributes to the statistical robustness of the inferred 
interactions: each of the co-expressed genes in a module 
confirm the data for the other genes in that module by 
providing evidence for a certain regulatory programme, 
whereas for direct methods the evidence for a particular  
regulator–target interaction is based on only a single-gene 
observation.

A comparison of the results from the direct net-
work inference method CLR (context likelihood of 
relatedness) and the module-based method Stochastic 
LeMoNe (learning module networks) shows how adopt-
ing the concept of modularity determines the interac-
tions that can be inferred (BOX 2; FIG. 2). By exploiting 
modularity, LeMoNe and related methods26 can assign 
regulators with expression profiles that are less similar 
to those of their target genes than is the case with CLR 
or similar methods27,28. Indeed, LeMoNe performs bet-
ter than CLR at inferring regulatory programmes for 
genes that are grouped in coarse-grained modules which 
correspond to larger pathways (for example, Fis, RNA 
polymerase σ-factor S (RpoS) and PurR) and for which 
the genes show an overall low degree of co-expression 

Figure 1 | Categorization of different state-of-the-art methods for module and 
network inference. Module inference methods search for sets of co-expressed genes. 
The major goal of network inference (NI) methods, on the other hand, is to search for a 
regulatory programme that explains an observed expression behaviour. NI methods can 
be categorized according to the strategies that they use to cope with the problem of 
underdetermination. Direct NI methods consider all genes on an individual basis, 
whereas module-based NI methods conceptualize the network by treating sets  
of co-expressed genes as single entities (modules). NI and module interference  
methods can be further divided according to whether they complement expression  
data with additional data sources (integrative methods) or use expression data only 
(non-integrative methods). Supervised and semi-supervised methods treat the inference 
problem as a classification problem, whereas unsupervised methods do not. The output 
of the methods can be global, indicating that they search for global patterns in the data, 
or query-driven, starting from a predefined set of core genes or core pathways and 
expanding on those. Most of the available programs can be used in either a query-driven 
or a global mode. The methods indicated in pink are specifically designed to be query 
driven. CLR, context likelihood of relatedness; COALESCE, combinatorial algorithm for 
expression- and sequence-based cluster extraction; DISTILLER, data integration system 
to identify links in expression regulation; GPS, gene promoter scan; LeMoNe, learning 
module networks; SEREND, semi-supervised regulatory-network discoverer; SIRENE, 
supervised inference of regulatory networks.
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A second strategy relates to extending the expression 
data with other available information. Integrative meth-
ods combine the expression data with complementary 
data describing the TRN from a different angle, such as 
chromatin immunoprecipitation-on-chip (ChIP-chip) 
data or motif data, and these methods often obtain more 
reliable interactions and a more complete picture of the 

network. Moreover, during the search, prioritizing pre-
dictions for which the independent data sources agree 
allows the search space to be traversed more efficiently.

As a third strategy, query-driven methods reduce the 
search space by intentionally restricting the number of 
interactions that needs to be evaluated: instead of search-
ing for a global pattern, as global inference methods do, 
query-driven methods concentrate their search on a pre-
defined set of core genes or on a subnetwork of interest, 
and they then expand on this core gene set or subnetwork 
given the available data.

A fourth strategy is to use supervised (and semi-
supervised) methods, which treat network inference 
as a classification problem and can be considered to be  
a specific way of exploiting known information in a 
query-driven manner.

As each strategy uses different assumptions and poses 
different constraints, the specific strategy or combina-
tion of strategies that are adopted determine the type 
of interactions that can be found. This is shown below, 
using results obtained from state-of-the-art inference 
tools that have successfully been applied to microbial 
data sets. For an algorithmic description of the inference 
tools mentioned below, see BOXES 2,3.

Module-based versus direct network inference. Usually, 
a biclustering method is used for module inference24. 
Most module-based network inference methods also use 
module inference based on biclustering as a first step, 
before the assignment of the transcriptional programme. 
Exploiting the concept of modularity offers advantages 
from both the biological and the statistical points of 
view. Most module-based approaches not only predict 
regulatory interactions, but also identify the experimen-
tal conditions under which the predicted interactions 
take place. This information can be helpful for design-
ing the appropriate conditions under which experi-
mental validation of the predicted interactions should 
be performed8,25. Assuming that modularity exists also 
contributes to the statistical robustness of the inferred 
interactions: each of the co-expressed genes in a module 
confirm the data for the other genes in that module by 
providing evidence for a certain regulatory programme, 
whereas for direct methods the evidence for a particular  
regulator–target interaction is based on only a single-gene 
observation.

A comparison of the results from the direct net-
work inference method CLR (context likelihood of 
relatedness) and the module-based method Stochastic 
LeMoNe (learning module networks) shows how adopt-
ing the concept of modularity determines the interac-
tions that can be inferred (BOX 2; FIG. 2). By exploiting 
modularity, LeMoNe and related methods26 can assign 
regulators with expression profiles that are less similar 
to those of their target genes than is the case with CLR 
or similar methods27,28. Indeed, LeMoNe performs bet-
ter than CLR at inferring regulatory programmes for 
genes that are grouped in coarse-grained modules which 
correspond to larger pathways (for example, Fis, RNA 
polymerase σ-factor S (RpoS) and PurR) and for which 
the genes show an overall low degree of co-expression 

Figure 1 | Categorization of different state-of-the-art methods for module and 
network inference. Module inference methods search for sets of co-expressed genes. 
The major goal of network inference (NI) methods, on the other hand, is to search for a 
regulatory programme that explains an observed expression behaviour. NI methods can 
be categorized according to the strategies that they use to cope with the problem of 
underdetermination. Direct NI methods consider all genes on an individual basis, 
whereas module-based NI methods conceptualize the network by treating sets  
of co-expressed genes as single entities (modules). NI and module interference  
methods can be further divided according to whether they complement expression  
data with additional data sources (integrative methods) or use expression data only 
(non-integrative methods). Supervised and semi-supervised methods treat the inference 
problem as a classification problem, whereas unsupervised methods do not. The output 
of the methods can be global, indicating that they search for global patterns in the data, 
or query-driven, starting from a predefined set of core genes or core pathways and 
expanding on those. Most of the available programs can be used in either a query-driven 
or a global mode. The methods indicated in pink are specifically designed to be query 
driven. CLR, context likelihood of relatedness; COALESCE, combinatorial algorithm for 
expression- and sequence-based cluster extraction; DISTILLER, data integration system 
to identify links in expression regulation; GPS, gene promoter scan; LeMoNe, learning 
module networks; SEREND, semi-supervised regulatory-network discoverer; SIRENE, 
supervised inference of regulatory networks.
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Optimization strategy 
A strategy used to screen  
the search space so that the 
optimal (or almost optimal) 
solution can be found without 
having to evaluate all possible 
solutions.

A second strategy relates to extending the expression 
data with other available information. Integrative meth-
ods combine the expression data with complementary 
data describing the TRN from a different angle, such as 
chromatin immunoprecipitation-on-chip (ChIP-chip) 
data or motif data, and these methods often obtain more 
reliable interactions and a more complete picture of the 

network. Moreover, during the search, prioritizing pre-
dictions for which the independent data sources agree 
allows the search space to be traversed more efficiently.

As a third strategy, query-driven methods reduce the 
search space by intentionally restricting the number of 
interactions that needs to be evaluated: instead of search-
ing for a global pattern, as global inference methods do, 
query-driven methods concentrate their search on a pre-
defined set of core genes or on a subnetwork of interest, 
and they then expand on this core gene set or subnetwork 
given the available data.

A fourth strategy is to use supervised (and semi-
supervised) methods, which treat network inference 
as a classification problem and can be considered to be  
a specific way of exploiting known information in a 
query-driven manner.

As each strategy uses different assumptions and poses 
different constraints, the specific strategy or combina-
tion of strategies that are adopted determine the type 
of interactions that can be found. This is shown below, 
using results obtained from state-of-the-art inference 
tools that have successfully been applied to microbial 
data sets. For an algorithmic description of the inference 
tools mentioned below, see BOXES 2,3.

Module-based versus direct network inference. Usually, 
a biclustering method is used for module inference24. 
Most module-based network inference methods also use 
module inference based on biclustering as a first step, 
before the assignment of the transcriptional programme. 
Exploiting the concept of modularity offers advantages 
from both the biological and the statistical points of 
view. Most module-based approaches not only predict 
regulatory interactions, but also identify the experimen-
tal conditions under which the predicted interactions 
take place. This information can be helpful for design-
ing the appropriate conditions under which experi-
mental validation of the predicted interactions should 
be performed8,25. Assuming that modularity exists also 
contributes to the statistical robustness of the inferred 
interactions: each of the co-expressed genes in a module 
confirm the data for the other genes in that module by 
providing evidence for a certain regulatory programme, 
whereas for direct methods the evidence for a particular  
regulator–target interaction is based on only a single-gene 
observation.

A comparison of the results from the direct net-
work inference method CLR (context likelihood of 
relatedness) and the module-based method Stochastic 
LeMoNe (learning module networks) shows how adopt-
ing the concept of modularity determines the interac-
tions that can be inferred (BOX 2; FIG. 2). By exploiting 
modularity, LeMoNe and related methods26 can assign 
regulators with expression profiles that are less similar 
to those of their target genes than is the case with CLR 
or similar methods27,28. Indeed, LeMoNe performs bet-
ter than CLR at inferring regulatory programmes for 
genes that are grouped in coarse-grained modules which 
correspond to larger pathways (for example, Fis, RNA 
polymerase σ-factor S (RpoS) and PurR) and for which 
the genes show an overall low degree of co-expression 

Figure 1 | Categorization of different state-of-the-art methods for module and 
network inference. Module inference methods search for sets of co-expressed genes. 
The major goal of network inference (NI) methods, on the other hand, is to search for a 
regulatory programme that explains an observed expression behaviour. NI methods can 
be categorized according to the strategies that they use to cope with the problem of 
underdetermination. Direct NI methods consider all genes on an individual basis, 
whereas module-based NI methods conceptualize the network by treating sets  
of co-expressed genes as single entities (modules). NI and module interference  
methods can be further divided according to whether they complement expression  
data with additional data sources (integrative methods) or use expression data only 
(non-integrative methods). Supervised and semi-supervised methods treat the inference 
problem as a classification problem, whereas unsupervised methods do not. The output 
of the methods can be global, indicating that they search for global patterns in the data, 
or query-driven, starting from a predefined set of core genes or core pathways and 
expanding on those. Most of the available programs can be used in either a query-driven 
or a global mode. The methods indicated in pink are specifically designed to be query 
driven. CLR, context likelihood of relatedness; COALESCE, combinatorial algorithm for 
expression- and sequence-based cluster extraction; DISTILLER, data integration system 
to identify links in expression regulation; GPS, gene promoter scan; LeMoNe, learning 
module networks; SEREND, semi-supervised regulatory-network discoverer; SIRENE, 
supervised inference of regulatory networks.
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the fact that for P-values greater than 0.40, it over-
estimates the number of false-positives, as previously
discussed [22]. However, as usually only P-values
<0.05 are considered as statistically significant, it is
not a cause of worry.

By analyzing the cases of relationships under the
alternative hypothesis, the majority of the methods
were shown to be consistent according to the
number of observations. The greater the number of
observations, the greater the areas under the ROC
curves (the power of the test). Exceptions are the
Pearson’s, Spearman’s and Kendall’s correlations for
non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-
lationships. These results mean that independent of
the number of observations, these methods are not
able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-
ships studied here, including linear, non-linear
monotonic/non-monotonic functions and also
non-functional relationships (indicated by the areas
under the ROC curves close to 1). Exception is the
square association that was identified only by the
HHG method. We note that distance correlation
did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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the fact that for P-values greater than 0.40, it over-
estimates the number of false-positives, as previously
discussed [22]. However, as usually only P-values
<0.05 are considered as statistically significant, it is
not a cause of worry.

By analyzing the cases of relationships under the
alternative hypothesis, the majority of the methods
were shown to be consistent according to the
number of observations. The greater the number of
observations, the greater the areas under the ROC
curves (the power of the test). Exceptions are the
Pearson’s, Spearman’s and Kendall’s correlations for
non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-
lationships. These results mean that independent of
the number of observations, these methods are not
able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-
ships studied here, including linear, non-linear
monotonic/non-monotonic functions and also
non-functional relationships (indicated by the areas
under the ROC curves close to 1). Exception is the
square association that was identified only by the
HHG method. We note that distance correlation
did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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the fact that for P-values greater than 0.40, it over-
estimates the number of false-positives, as previously
discussed [22]. However, as usually only P-values
<0.05 are considered as statistically significant, it is
not a cause of worry.

By analyzing the cases of relationships under the
alternative hypothesis, the majority of the methods
were shown to be consistent according to the
number of observations. The greater the number of
observations, the greater the areas under the ROC
curves (the power of the test). Exceptions are the
Pearson’s, Spearman’s and Kendall’s correlations for
non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-
lationships. These results mean that independent of
the number of observations, these methods are not
able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-
ships studied here, including linear, non-linear
monotonic/non-monotonic functions and also
non-functional relationships (indicated by the areas
under the ROC curves close to 1). Exception is the
square association that was identified only by the
HHG method. We note that distance correlation
did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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the fact that for P-values greater than 0.40, it over-
estimates the number of false-positives, as previously
discussed [22]. However, as usually only P-values
<0.05 are considered as statistically significant, it is
not a cause of worry.

By analyzing the cases of relationships under the
alternative hypothesis, the majority of the methods
were shown to be consistent according to the
number of observations. The greater the number of
observations, the greater the areas under the ROC
curves (the power of the test). Exceptions are the
Pearson’s, Spearman’s and Kendall’s correlations for
non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-
lationships. These results mean that independent of
the number of observations, these methods are not
able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-
ships studied here, including linear, non-linear
monotonic/non-monotonic functions and also
non-functional relationships (indicated by the areas
under the ROC curves close to 1). Exception is the
square association that was identified only by the
HHG method. We note that distance correlation
did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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the fact that for P-values greater than 0.40, it over-
estimates the number of false-positives, as previously
discussed [22]. However, as usually only P-values
<0.05 are considered as statistically significant, it is
not a cause of worry.

By analyzing the cases of relationships under the
alternative hypothesis, the majority of the methods
were shown to be consistent according to the
number of observations. The greater the number of
observations, the greater the areas under the ROC
curves (the power of the test). Exceptions are the
Pearson’s, Spearman’s and Kendall’s correlations for
non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-
lationships. These results mean that independent of
the number of observations, these methods are not
able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-
ships studied here, including linear, non-linear
monotonic/non-monotonic functions and also
non-functional relationships (indicated by the areas
under the ROC curves close to 1). Exception is the
square association that was identified only by the
HHG method. We note that distance correlation
did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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the fact that for P-values greater than 0.40, it over-
estimates the number of false-positives, as previously
discussed [22]. However, as usually only P-values
<0.05 are considered as statistically significant, it is
not a cause of worry.

By analyzing the cases of relationships under the
alternative hypothesis, the majority of the methods
were shown to be consistent according to the
number of observations. The greater the number of
observations, the greater the areas under the ROC
curves (the power of the test). Exceptions are the
Pearson’s, Spearman’s and Kendall’s correlations for
non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-
lationships. These results mean that independent of
the number of observations, these methods are not
able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-
ships studied here, including linear, non-linear
monotonic/non-monotonic functions and also
non-functional relationships (indicated by the areas
under the ROC curves close to 1). Exception is the
square association that was identified only by the
HHG method. We note that distance correlation
did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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the fact that for P-values greater than 0.40, it over-
estimates the number of false-positives, as previously
discussed [22]. However, as usually only P-values
<0.05 are considered as statistically significant, it is
not a cause of worry.

By analyzing the cases of relationships under the
alternative hypothesis, the majority of the methods
were shown to be consistent according to the
number of observations. The greater the number of
observations, the greater the areas under the ROC
curves (the power of the test). Exceptions are the
Pearson’s, Spearman’s and Kendall’s correlations for
non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-
lationships. These results mean that independent of
the number of observations, these methods are not
able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-
ships studied here, including linear, non-linear
monotonic/non-monotonic functions and also
non-functional relationships (indicated by the areas
under the ROC curves close to 1). Exception is the
square association that was identified only by the
HHG method. We note that distance correlation
did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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the fact that for P-values greater than 0.40, it over-
estimates the number of false-positives, as previously
discussed [22]. However, as usually only P-values
<0.05 are considered as statistically significant, it is
not a cause of worry.

By analyzing the cases of relationships under the
alternative hypothesis, the majority of the methods
were shown to be consistent according to the
number of observations. The greater the number of
observations, the greater the areas under the ROC
curves (the power of the test). Exceptions are the
Pearson’s, Spearman’s and Kendall’s correlations for
non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-
lationships. These results mean that independent of
the number of observations, these methods are not
able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-
ships studied here, including linear, non-linear
monotonic/non-monotonic functions and also
non-functional relationships (indicated by the areas
under the ROC curves close to 1). Exception is the
square association that was identified only by the
HHG method. We note that distance correlation
did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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the fact that for P-values greater than 0.40, it over-
estimates the number of false-positives, as previously
discussed [22]. However, as usually only P-values
<0.05 are considered as statistically significant, it is
not a cause of worry.

By analyzing the cases of relationships under the
alternative hypothesis, the majority of the methods
were shown to be consistent according to the
number of observations. The greater the number of
observations, the greater the areas under the ROC
curves (the power of the test). Exceptions are the
Pearson’s, Spearman’s and Kendall’s correlations for
non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-
lationships. These results mean that independent of
the number of observations, these methods are not
able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-
ships studied here, including linear, non-linear
monotonic/non-monotonic functions and also
non-functional relationships (indicated by the areas
under the ROC curves close to 1). Exception is the
square association that was identified only by the
HHG method. We note that distance correlation
did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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the fact that for P-values greater than 0.40, it over-
estimates the number of false-positives, as previously
discussed [22]. However, as usually only P-values
<0.05 are considered as statistically significant, it is
not a cause of worry.

By analyzing the cases of relationships under the
alternative hypothesis, the majority of the methods
were shown to be consistent according to the
number of observations. The greater the number of
observations, the greater the areas under the ROC
curves (the power of the test). Exceptions are the
Pearson’s, Spearman’s and Kendall’s correlations for
non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-
lationships. These results mean that independent of
the number of observations, these methods are not
able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-
ships studied here, including linear, non-linear
monotonic/non-monotonic functions and also
non-functional relationships (indicated by the areas
under the ROC curves close to 1). Exception is the
square association that was identified only by the
HHG method. We note that distance correlation
did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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the fact that for P-values greater than 0.40, it over-
estimates the number of false-positives, as previously
discussed [22]. However, as usually only P-values
<0.05 are considered as statistically significant, it is
not a cause of worry.

By analyzing the cases of relationships under the
alternative hypothesis, the majority of the methods
were shown to be consistent according to the
number of observations. The greater the number of
observations, the greater the areas under the ROC
curves (the power of the test). Exceptions are the
Pearson’s, Spearman’s and Kendall’s correlations for
non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-
lationships. These results mean that independent of
the number of observations, these methods are not
able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-
ships studied here, including linear, non-linear
monotonic/non-monotonic functions and also
non-functional relationships (indicated by the areas
under the ROC curves close to 1). Exception is the
square association that was identified only by the
HHG method. We note that distance correlation
did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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the fact that for P-values greater than 0.40, it over-
estimates the number of false-positives, as previously
discussed [22]. However, as usually only P-values
<0.05 are considered as statistically significant, it is
not a cause of worry.

By analyzing the cases of relationships under the
alternative hypothesis, the majority of the methods
were shown to be consistent according to the
number of observations. The greater the number of
observations, the greater the areas under the ROC
curves (the power of the test). Exceptions are the
Pearson’s, Spearman’s and Kendall’s correlations for
non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-
lationships. These results mean that independent of
the number of observations, these methods are not
able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-
ships studied here, including linear, non-linear
monotonic/non-monotonic functions and also
non-functional relationships (indicated by the areas
under the ROC curves close to 1). Exception is the
square association that was identified only by the
HHG method. We note that distance correlation
did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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the fact that for P-values greater than 0.40, it over-
estimates the number of false-positives, as previously
discussed [22]. However, as usually only P-values
<0.05 are considered as statistically significant, it is
not a cause of worry.

By analyzing the cases of relationships under the
alternative hypothesis, the majority of the methods
were shown to be consistent according to the
number of observations. The greater the number of
observations, the greater the areas under the ROC
curves (the power of the test). Exceptions are the
Pearson’s, Spearman’s and Kendall’s correlations for
non-linear non-monotonic (quadratic, sine) and also

non-functional (circumference, cross and square) re-
lationships. These results mean that independent of
the number of observations, these methods are not
able to identify these types of associations.

MI, MIC, HHG measure and Hoeffding’s D
measure are able to identify the majority of relation-
ships studied here, including linear, non-linear
monotonic/non-monotonic functions and also
non-functional relationships (indicated by the areas
under the ROC curves close to 1). Exception is the
square association that was identified only by the
HHG method. We note that distance correlation
did not identify non-functional relationships in our

Figure 1: Simulations. (A) Independent data, (B) linear association, (C) exponential association - non-linear
monotonic association, (D) quadratic association - non-linear non-monotonic, (E) sine association^non-linear
non-monotonic, (F) circumference^non-functional association, (G) cross^non-functional association, (H) square ^
non-functional association and (I) local correlation^ only part of the data is correlated, which is represented by
crosses.
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we assume that we can write:

xj
k~fj(x

{j
k )zek,Vk ð1Þ

where ek is a random noise with zero mean (conditionally to x{j
k ).

We further make the assumption that the function fj only exploits

the expression in x{j of the genes that are direct regulators of
gene j, i.e. genes that are directly connected to gene j in the
targeted network. Recovering the regulatory links pointing to
gene j thus amounts at finding those genes whose expression is
predictive of the expression of the target gene. In machine
learning terminology, this can be considered as a feature selection
problem (in regression) for which many solutions exist [28]. We
assume here the use of a feature ranking technique that, instead
of directly returning a feature subset, yields a ranking of the
features from the most relevant to the less relevant for predicting
the output.

The proposed network inference procedure is illustrated in
Figure 1 and works as follows:

N For j = 1 to p:

– Generate the learning sample of input-output pairs for gene
j:

LSj~f(x{j
k ,xj

k),k~1, . . . ,Ng:

– Use a feature selection technique on LSj to compute
confidence levels wi,j ,Vi=j, for all genes except gene j itself.

N Aggregate the p individual gene rankings to get a global
ranking of all regulatory links.

Note that depending of the interpretation of the weights wi,j ,
their aggregation to a get a global ranking of regulatory links is not
trivial. We will see in the context of tree-based methods that it
requires to normalize each expression vector appropriately.

Gene Ranking with Tree-based Methods
The nature of the problem and the proposed solution put some

constraints on candidate feature selection techniques. The nature
of the functions fj is unknown but they are expected to involve the
expression of several genes (combinatorial regulation) and to be
non-linear. The number of input features in each of these
problems is typically much greater than the number of
observations. Computationally, since the identification of a
network involving p genes requires to rerun the algorithm p times,
it is also of interest for this algorithm to be fast and to require as
few manual tuning as possible. Tree-based ensemble methods are
good candidates for that purpose. These methods do not make any
assumption about the nature of the target function, can potentially
deal with interacting features and non-linearity. They work well in
the presence of a large number of features, are fast to compute,
scalable, and essentially parameter-free (see [29] for a review).

We first briefly describe these methods and their built-in feature
ranking mechanism and then discuss their use in the context of the
network inference procedure described in the previous section.

Tree-based Ensemble Methods
Each subproblem, defined by a learning sample LSj , is a

supervised (non-parametric) regression problem. Using square
error loss, each problem amounts at finding a function fj that
minimizes the following error:

XN

k~1

(xj
k{fj(x

{j
k ))2: ð2Þ

Regression trees [30] solve this problem by developing tree
structured models. The basic idea of this method is to recursively
split the learning sample with binary tests based each on one input

variable (selected in x{j ), trying to reduce as much as possible the

variance of the output variable (xj ) in the resulting subsets of
samples. Candidate splits for numerical variables typically
compare the input variable values with a threshold which is
determined during the tree growing.

Figure 1. GENIE3 procedure. For each gene j~1, . . . ,p, a learning sample LSj is generated with expression levels of j as output values and
expression levels of all other genes as input values. A function fj is learned from LSj and a local ranking of all genes except j is computed. The p local
rankings are then aggregated to get a global ranking of all regulatory links.
doi:10.1371/journal.pone.0012776.g001
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We further make the assumption that the function fj only exploits

the expression in x{j of the genes that are direct regulators of
gene j, i.e. genes that are directly connected to gene j in the
targeted network. Recovering the regulatory links pointing to
gene j thus amounts at finding those genes whose expression is
predictive of the expression of the target gene. In machine
learning terminology, this can be considered as a feature selection
problem (in regression) for which many solutions exist [28]. We
assume here the use of a feature ranking technique that, instead
of directly returning a feature subset, yields a ranking of the
features from the most relevant to the less relevant for predicting
the output.

The proposed network inference procedure is illustrated in
Figure 1 and works as follows:

N For j = 1 to p:

– Generate the learning sample of input-output pairs for gene
j:

LSj~f(x{j
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k),k~1, . . . ,Ng:

– Use a feature selection technique on LSj to compute
confidence levels wi,j ,Vi=j, for all genes except gene j itself.

N Aggregate the p individual gene rankings to get a global
ranking of all regulatory links.

Note that depending of the interpretation of the weights wi,j ,
their aggregation to a get a global ranking of regulatory links is not
trivial. We will see in the context of tree-based methods that it
requires to normalize each expression vector appropriately.

Gene Ranking with Tree-based Methods
The nature of the problem and the proposed solution put some

constraints on candidate feature selection techniques. The nature
of the functions fj is unknown but they are expected to involve the
expression of several genes (combinatorial regulation) and to be
non-linear. The number of input features in each of these
problems is typically much greater than the number of
observations. Computationally, since the identification of a
network involving p genes requires to rerun the algorithm p times,
it is also of interest for this algorithm to be fast and to require as
few manual tuning as possible. Tree-based ensemble methods are
good candidates for that purpose. These methods do not make any
assumption about the nature of the target function, can potentially
deal with interacting features and non-linearity. They work well in
the presence of a large number of features, are fast to compute,
scalable, and essentially parameter-free (see [29] for a review).

We first briefly describe these methods and their built-in feature
ranking mechanism and then discuss their use in the context of the
network inference procedure described in the previous section.

Tree-based Ensemble Methods
Each subproblem, defined by a learning sample LSj , is a

supervised (non-parametric) regression problem. Using square
error loss, each problem amounts at finding a function fj that
minimizes the following error:
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Regression trees [30] solve this problem by developing tree
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variable (selected in x{j ), trying to reduce as much as possible the

variance of the output variable (xj ) in the resulting subsets of
samples. Candidate splits for numerical variables typically
compare the input variable values with a threshold which is
determined during the tree growing.

Figure 1. GENIE3 procedure. For each gene j~1, . . . ,p, a learning sample LSj is generated with expression levels of j as output values and
expression levels of all other genes as input values. A function fj is learned from LSj and a local ranking of all genes except j is computed. The p local
rankings are then aggregated to get a global ranking of all regulatory links.
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trivial. We will see in the context of tree-based methods that it
requires to normalize each expression vector appropriately.

Gene Ranking with Tree-based Methods
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of the functions fj is unknown but they are expected to involve the
expression of several genes (combinatorial regulation) and to be
non-linear. The number of input features in each of these
problems is typically much greater than the number of
observations. Computationally, since the identification of a
network involving p genes requires to rerun the algorithm p times,
it is also of interest for this algorithm to be fast and to require as
few manual tuning as possible. Tree-based ensemble methods are
good candidates for that purpose. These methods do not make any
assumption about the nature of the target function, can potentially
deal with interacting features and non-linearity. They work well in
the presence of a large number of features, are fast to compute,
scalable, and essentially parameter-free (see [29] for a review).

We first briefly describe these methods and their built-in feature
ranking mechanism and then discuss their use in the context of the
network inference procedure described in the previous section.

Tree-based Ensemble Methods
Each subproblem, defined by a learning sample LSj , is a

supervised (non-parametric) regression problem. Using square
error loss, each problem amounts at finding a function fj that
minimizes the following error:

XN

k~1

(xj
k{fj(x

{j
k ))2: ð2Þ

Regression trees [30] solve this problem by developing tree
structured models. The basic idea of this method is to recursively
split the learning sample with binary tests based each on one input

variable (selected in x{j ), trying to reduce as much as possible the

variance of the output variable (xj ) in the resulting subsets of
samples. Candidate splits for numerical variables typically
compare the input variable values with a threshold which is
determined during the tree growing.

Figure 1. GENIE3 procedure. For each gene j~1, . . . ,p, a learning sample LSj is generated with expression levels of j as output values and
expression levels of all other genes as input values. A function fj is learned from LSj and a local ranking of all genes except j is computed. The p local
rankings are then aggregated to get a global ranking of all regulatory links.
doi:10.1371/journal.pone.0012776.g001

Inferring GRNs with Trees

PLoS ONE | www.plosone.org 3 September 2010 | Volume 5 | Issue 9 | e12776

e(G1) = f1(e(G2), …, e(Gp))

e(G2) = f2(e(G1), …, e(Gp))

e(Gp) = f2(e(G1), …, e(Gp−1))



Reverse engineering of gene regulatory nets
GENIE3

 can be learned in several waysfi

we assume that we can write:

xj
k~fj(x

{j
k )zek,Vk ð1Þ

where ek is a random noise with zero mean (conditionally to x{j
k ).

We further make the assumption that the function fj only exploits

the expression in x{j of the genes that are direct regulators of
gene j, i.e. genes that are directly connected to gene j in the
targeted network. Recovering the regulatory links pointing to
gene j thus amounts at finding those genes whose expression is
predictive of the expression of the target gene. In machine
learning terminology, this can be considered as a feature selection
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assume here the use of a feature ranking technique that, instead
of directly returning a feature subset, yields a ranking of the
features from the most relevant to the less relevant for predicting
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j:

LSj~f(x{j
k ,xj

k),k~1, . . . ,Ng:
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confidence levels wi,j ,Vi=j, for all genes except gene j itself.

N Aggregate the p individual gene rankings to get a global
ranking of all regulatory links.

Note that depending of the interpretation of the weights wi,j ,
their aggregation to a get a global ranking of regulatory links is not
trivial. We will see in the context of tree-based methods that it
requires to normalize each expression vector appropriately.

Gene Ranking with Tree-based Methods
The nature of the problem and the proposed solution put some

constraints on candidate feature selection techniques. The nature
of the functions fj is unknown but they are expected to involve the
expression of several genes (combinatorial regulation) and to be
non-linear. The number of input features in each of these
problems is typically much greater than the number of
observations. Computationally, since the identification of a
network involving p genes requires to rerun the algorithm p times,
it is also of interest for this algorithm to be fast and to require as
few manual tuning as possible. Tree-based ensemble methods are
good candidates for that purpose. These methods do not make any
assumption about the nature of the target function, can potentially
deal with interacting features and non-linearity. They work well in
the presence of a large number of features, are fast to compute,
scalable, and essentially parameter-free (see [29] for a review).

We first briefly describe these methods and their built-in feature
ranking mechanism and then discuss their use in the context of the
network inference procedure described in the previous section.

Tree-based Ensemble Methods
Each subproblem, defined by a learning sample LSj , is a

supervised (non-parametric) regression problem. Using square
error loss, each problem amounts at finding a function fj that
minimizes the following error:
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Regression trees [30] solve this problem by developing tree
structured models. The basic idea of this method is to recursively
split the learning sample with binary tests based each on one input

variable (selected in x{j ), trying to reduce as much as possible the

variance of the output variable (xj ) in the resulting subsets of
samples. Candidate splits for numerical variables typically
compare the input variable values with a threshold which is
determined during the tree growing.

Figure 1. GENIE3 procedure. For each gene j~1, . . . ,p, a learning sample LSj is generated with expression levels of j as output values and
expression levels of all other genes as input values. A function fj is learned from LSj and a local ranking of all genes except j is computed. The p local
rankings are then aggregated to get a global ranking of all regulatory links.
doi:10.1371/journal.pone.0012776.g001
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gene j, i.e. genes that are directly connected to gene j in the
targeted network. Recovering the regulatory links pointing to
gene j thus amounts at finding those genes whose expression is
predictive of the expression of the target gene. In machine
learning terminology, this can be considered as a feature selection
problem (in regression) for which many solutions exist [28]. We
assume here the use of a feature ranking technique that, instead
of directly returning a feature subset, yields a ranking of the
features from the most relevant to the less relevant for predicting
the output.

The proposed network inference procedure is illustrated in
Figure 1 and works as follows:

N For j = 1 to p:

– Generate the learning sample of input-output pairs for gene
j:

LSj~f(x{j
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k),k~1, . . . ,Ng:

– Use a feature selection technique on LSj to compute
confidence levels wi,j ,Vi=j, for all genes except gene j itself.

N Aggregate the p individual gene rankings to get a global
ranking of all regulatory links.

Note that depending of the interpretation of the weights wi,j ,
their aggregation to a get a global ranking of regulatory links is not
trivial. We will see in the context of tree-based methods that it
requires to normalize each expression vector appropriately.

Gene Ranking with Tree-based Methods
The nature of the problem and the proposed solution put some

constraints on candidate feature selection techniques. The nature
of the functions fj is unknown but they are expected to involve the
expression of several genes (combinatorial regulation) and to be
non-linear. The number of input features in each of these
problems is typically much greater than the number of
observations. Computationally, since the identification of a
network involving p genes requires to rerun the algorithm p times,
it is also of interest for this algorithm to be fast and to require as
few manual tuning as possible. Tree-based ensemble methods are
good candidates for that purpose. These methods do not make any
assumption about the nature of the target function, can potentially
deal with interacting features and non-linearity. They work well in
the presence of a large number of features, are fast to compute,
scalable, and essentially parameter-free (see [29] for a review).

We first briefly describe these methods and their built-in feature
ranking mechanism and then discuss their use in the context of the
network inference procedure described in the previous section.

Tree-based Ensemble Methods
Each subproblem, defined by a learning sample LSj , is a

supervised (non-parametric) regression problem. Using square
error loss, each problem amounts at finding a function fj that
minimizes the following error:
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Regression trees [30] solve this problem by developing tree
structured models. The basic idea of this method is to recursively
split the learning sample with binary tests based each on one input

variable (selected in x{j ), trying to reduce as much as possible the

variance of the output variable (xj ) in the resulting subsets of
samples. Candidate splits for numerical variables typically
compare the input variable values with a threshold which is
determined during the tree growing.

Figure 1. GENIE3 procedure. For each gene j~1, . . . ,p, a learning sample LSj is generated with expression levels of j as output values and
expression levels of all other genes as input values. A function fj is learned from LSj and a local ranking of all genes except j is computed. The p local
rankings are then aggregated to get a global ranking of all regulatory links.
doi:10.1371/journal.pone.0012776.g001
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gene j thus amounts at finding those genes whose expression is
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learning terminology, this can be considered as a feature selection
problem (in regression) for which many solutions exist [28]. We
assume here the use of a feature ranking technique that, instead
of directly returning a feature subset, yields a ranking of the
features from the most relevant to the less relevant for predicting
the output.

The proposed network inference procedure is illustrated in
Figure 1 and works as follows:

N For j = 1 to p:

– Generate the learning sample of input-output pairs for gene
j:

LSj~f(x{j
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k),k~1, . . . ,Ng:

– Use a feature selection technique on LSj to compute
confidence levels wi,j ,Vi=j, for all genes except gene j itself.

N Aggregate the p individual gene rankings to get a global
ranking of all regulatory links.

Note that depending of the interpretation of the weights wi,j ,
their aggregation to a get a global ranking of regulatory links is not
trivial. We will see in the context of tree-based methods that it
requires to normalize each expression vector appropriately.

Gene Ranking with Tree-based Methods
The nature of the problem and the proposed solution put some

constraints on candidate feature selection techniques. The nature
of the functions fj is unknown but they are expected to involve the
expression of several genes (combinatorial regulation) and to be
non-linear. The number of input features in each of these
problems is typically much greater than the number of
observations. Computationally, since the identification of a
network involving p genes requires to rerun the algorithm p times,
it is also of interest for this algorithm to be fast and to require as
few manual tuning as possible. Tree-based ensemble methods are
good candidates for that purpose. These methods do not make any
assumption about the nature of the target function, can potentially
deal with interacting features and non-linearity. They work well in
the presence of a large number of features, are fast to compute,
scalable, and essentially parameter-free (see [29] for a review).

We first briefly describe these methods and their built-in feature
ranking mechanism and then discuss their use in the context of the
network inference procedure described in the previous section.

Tree-based Ensemble Methods
Each subproblem, defined by a learning sample LSj , is a

supervised (non-parametric) regression problem. Using square
error loss, each problem amounts at finding a function fj that
minimizes the following error:
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Regression trees [30] solve this problem by developing tree
structured models. The basic idea of this method is to recursively
split the learning sample with binary tests based each on one input

variable (selected in x{j ), trying to reduce as much as possible the

variance of the output variable (xj ) in the resulting subsets of
samples. Candidate splits for numerical variables typically
compare the input variable values with a threshold which is
determined during the tree growing.

Figure 1. GENIE3 procedure. For each gene j~1, . . . ,p, a learning sample LSj is generated with expression levels of j as output values and
expression levels of all other genes as input values. A function fj is learned from LSj and a local ranking of all genes except j is computed. The p local
rankings are then aggregated to get a global ranking of all regulatory links.
doi:10.1371/journal.pone.0012776.g001
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of directly returning a feature subset, yields a ranking of the
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– Use a feature selection technique on LSj to compute
confidence levels wi,j ,Vi=j, for all genes except gene j itself.
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ranking of all regulatory links.

Note that depending of the interpretation of the weights wi,j ,
their aggregation to a get a global ranking of regulatory links is not
trivial. We will see in the context of tree-based methods that it
requires to normalize each expression vector appropriately.

Gene Ranking with Tree-based Methods
The nature of the problem and the proposed solution put some

constraints on candidate feature selection techniques. The nature
of the functions fj is unknown but they are expected to involve the
expression of several genes (combinatorial regulation) and to be
non-linear. The number of input features in each of these
problems is typically much greater than the number of
observations. Computationally, since the identification of a
network involving p genes requires to rerun the algorithm p times,
it is also of interest for this algorithm to be fast and to require as
few manual tuning as possible. Tree-based ensemble methods are
good candidates for that purpose. These methods do not make any
assumption about the nature of the target function, can potentially
deal with interacting features and non-linearity. They work well in
the presence of a large number of features, are fast to compute,
scalable, and essentially parameter-free (see [29] for a review).

We first briefly describe these methods and their built-in feature
ranking mechanism and then discuss their use in the context of the
network inference procedure described in the previous section.

Tree-based Ensemble Methods
Each subproblem, defined by a learning sample LSj , is a

supervised (non-parametric) regression problem. Using square
error loss, each problem amounts at finding a function fj that
minimizes the following error:
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Regression trees [30] solve this problem by developing tree
structured models. The basic idea of this method is to recursively
split the learning sample with binary tests based each on one input

variable (selected in x{j ), trying to reduce as much as possible the

variance of the output variable (xj ) in the resulting subsets of
samples. Candidate splits for numerical variables typically
compare the input variable values with a threshold which is
determined during the tree growing.

Figure 1. GENIE3 procedure. For each gene j~1, . . . ,p, a learning sample LSj is generated with expression levels of j as output values and
expression levels of all other genes as input values. A function fj is learned from LSj and a local ranking of all genes except j is computed. The p local
rankings are then aggregated to get a global ranking of all regulatory links.
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Figure 1. The overall workflow of GRN inference methods. The methods start with filtering genes based on their variability or a priori knowledge. They next construct
intermediate data depending on the modeling and data assumption and then infer the network. The output of these methods can be either co-expression networks
which are undirected from top selected connections or directed networks with regulatory relationships between genes. To evaluate the constructed networks, each
method adopts different validation techniques, including using simulation, enrichment analysis, literature support, and expert interpretation and conducting additional
laboratory experiments.

Tools that come with C++ components need to be compiled.
Among the 15 methods, three are provided as Matlab scripts.
Note that while R, Python, Julia and C++ are open-source and
can be freely downloaded for most operation systems, Matlab
usually requires an expensive license.

Among the 15 methods, only SCNS provides a web-based
interface. The interface is simple and only provides handy tools
for selecting the input, viewing and visualizing the output. It
uses Adobe Flash to visualize the network. Since Adobe Flash
is deprecated, the software may not be able to function in the
near future. The remaining 14 tools are provided in the form of
stand-alone package or executable scripts that can be run on the
command line. The three methods, Boolean Pseudotime, SCODE
and SCOUP, provide a command-line interface for users to per-
form analysis. Although it is convenient to perform an analysis
using these tools, combining these with other packages might
require additional implementations to make it work smoothly
between different environments. Inference Snapshot is the only
method that performs its analysis using a mixture of scripts
using multiple programming languages. In order to complete an
analysis, users have to switch from Matlab to C++ to complete
their analysis. In addition, this method hardcodes the input and
parameters, i.e. users have to modify the code to change the
name of the input file or to change any parameters.

We also provide ratings for the usability of the surveyed tools.
For each method, we provide a score for each of the following
categories: (i) tutorial, (ii) documentation, (iii) code quality, (iv)
user-friendliness and (v) completion rate. First, we check if the
authors provide a detailed and easy-to-follow tutorial for their
tool. Boolean Pseudotime, BTR, SCNS, SCODE, SINCERA, SCENIC
and SCIMITAR are the best in providing high-quality tutorials,
whereas Inference Snapshot, Empirical Bayes, Information Mea-
sures, SINCERITIES and SCINGE provide only short scripts as
examples of how to perform the analysis. Second, we check if
each of the functions and parameters is correctly documented
with details. Methods distributed as R packages (BTR, NLNET,
SINCERA, SCENIC and LEAP) provide the most detailed documen-
tation. In contrast, Inference Snapshot and SCIMITAR provide
only minimum comments on function parameters. Third, we
assess the quality of the code regarding its structure, testability
(e.g. unit test), compatibility (with different operation systems,
dependencies, compilers) and reliability (how frequent the soft-
ware crashes). Methods that are bundled as packages can be
installed easily (Boolean Pseudotime, Empirical Bayes, Informa-
tion Measures, NLNET, SINCERA and SCENIC). In contrast, SCNS,
SCIMITAR and SCINGE provide executable files and scripts that

require users to manually resolve conflicted and missing depen-
dencies. Inference Snapshot even requires users to compile C++
and to switch between command-line and Matlab environment
to finish an analysis. This method is not included in our per-
formance assessment because we were not able to execute any
analysis.

Fourth, we assess how easy it is for the users to perform an
analysis using their own data, e.g. preparing the input expression
and creating additional required inputs. For Boolean Pseudotime,
BTR, SCODE, Information Measures, NLNET, SINCERA and LEAP,
users can easily provide the expression matrix as input. In con-
trast, SCINGE requires users to prepare data in specific formats
while SCOUP requires users to compute the summary statistics
of the distribution of each gene (mean and variance). Finally, we
assess the methods based on completion rate using 139 datasets
from our simulation studies with varying numbers of genes
(20 to 3000), samples (200 to 1000) and sparsity levels (30–90%).
SCODE, SCENIC and LEAP are the only methods that have 100%
completion rate. We were not able to finish any analysis using
Inference Snapshot. Among the 14 methods tested, BTR has the
lowest completion rate (27%) since it cannot finish analyses with
more than 30 genes. The overall usability score of each method
is shown in the last column of Table 1. SCODE, Information Mea-
sures, NLNET, SCENIC and LEAP have the highest overall usability
rating (5/5), whereas Inference Snapshot (1/5), SCIMITAR (2/5)
and SCINGE (2/5) have the lowest rating. Supplementary Table S1
provides more details about the usability of each method while
Supplementary Table S2 provides the input and workflow.

Methods
In general, GRN inference methods aim at capturing the network
dynamics that explain the underlying regulatory states in dif-
ferent cellular compartments and conditions. Each GRN infer-
ence model follows an explicit assumption about the regulatory
dynamics that can be observed through the changes in expres-
sion data. The overall workflow of GRN inference methods is pre-
sented in Figure 1. The input includes a scRNA-seq expression
matrix in which rows represent genes and columns represent
cells (or vice versa). Due to computational limitation, all GRN
methods start with a gene filtering step, which narrows the
analysis to genes with high variability or genes that are of users’
interest (pre-defined genes). Depending on the assumption of
the regulatory dynamics and the inference technique used, the
filtered data are then transformed into necessary structure/
format, such as binary values (boolean model), pseudo-time
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Figure 1. The overall workflow of GRN inference methods. The methods start with filtering genes based on their variability or a priori knowledge. They next construct
intermediate data depending on the modeling and data assumption and then infer the network. The output of these methods can be either co-expression networks
which are undirected from top selected connections or directed networks with regulatory relationships between genes. To evaluate the constructed networks, each
method adopts different validation techniques, including using simulation, enrichment analysis, literature support, and expert interpretation and conducting additional
laboratory experiments.

Tools that come with C++ components need to be compiled.
Among the 15 methods, three are provided as Matlab scripts.
Note that while R, Python, Julia and C++ are open-source and
can be freely downloaded for most operation systems, Matlab
usually requires an expensive license.

Among the 15 methods, only SCNS provides a web-based
interface. The interface is simple and only provides handy tools
for selecting the input, viewing and visualizing the output. It
uses Adobe Flash to visualize the network. Since Adobe Flash
is deprecated, the software may not be able to function in the
near future. The remaining 14 tools are provided in the form of
stand-alone package or executable scripts that can be run on the
command line. The three methods, Boolean Pseudotime, SCODE
and SCOUP, provide a command-line interface for users to per-
form analysis. Although it is convenient to perform an analysis
using these tools, combining these with other packages might
require additional implementations to make it work smoothly
between different environments. Inference Snapshot is the only
method that performs its analysis using a mixture of scripts
using multiple programming languages. In order to complete an
analysis, users have to switch from Matlab to C++ to complete
their analysis. In addition, this method hardcodes the input and
parameters, i.e. users have to modify the code to change the
name of the input file or to change any parameters.

We also provide ratings for the usability of the surveyed tools.
For each method, we provide a score for each of the following
categories: (i) tutorial, (ii) documentation, (iii) code quality, (iv)
user-friendliness and (v) completion rate. First, we check if the
authors provide a detailed and easy-to-follow tutorial for their
tool. Boolean Pseudotime, BTR, SCNS, SCODE, SINCERA, SCENIC
and SCIMITAR are the best in providing high-quality tutorials,
whereas Inference Snapshot, Empirical Bayes, Information Mea-
sures, SINCERITIES and SCINGE provide only short scripts as
examples of how to perform the analysis. Second, we check if
each of the functions and parameters is correctly documented
with details. Methods distributed as R packages (BTR, NLNET,
SINCERA, SCENIC and LEAP) provide the most detailed documen-
tation. In contrast, Inference Snapshot and SCIMITAR provide
only minimum comments on function parameters. Third, we
assess the quality of the code regarding its structure, testability
(e.g. unit test), compatibility (with different operation systems,
dependencies, compilers) and reliability (how frequent the soft-
ware crashes). Methods that are bundled as packages can be
installed easily (Boolean Pseudotime, Empirical Bayes, Informa-
tion Measures, NLNET, SINCERA and SCENIC). In contrast, SCNS,
SCIMITAR and SCINGE provide executable files and scripts that

require users to manually resolve conflicted and missing depen-
dencies. Inference Snapshot even requires users to compile C++
and to switch between command-line and Matlab environment
to finish an analysis. This method is not included in our per-
formance assessment because we were not able to execute any
analysis.

Fourth, we assess how easy it is for the users to perform an
analysis using their own data, e.g. preparing the input expression
and creating additional required inputs. For Boolean Pseudotime,
BTR, SCODE, Information Measures, NLNET, SINCERA and LEAP,
users can easily provide the expression matrix as input. In con-
trast, SCINGE requires users to prepare data in specific formats
while SCOUP requires users to compute the summary statistics
of the distribution of each gene (mean and variance). Finally, we
assess the methods based on completion rate using 139 datasets
from our simulation studies with varying numbers of genes
(20 to 3000), samples (200 to 1000) and sparsity levels (30–90%).
SCODE, SCENIC and LEAP are the only methods that have 100%
completion rate. We were not able to finish any analysis using
Inference Snapshot. Among the 14 methods tested, BTR has the
lowest completion rate (27%) since it cannot finish analyses with
more than 30 genes. The overall usability score of each method
is shown in the last column of Table 1. SCODE, Information Mea-
sures, NLNET, SCENIC and LEAP have the highest overall usability
rating (5/5), whereas Inference Snapshot (1/5), SCIMITAR (2/5)
and SCINGE (2/5) have the lowest rating. Supplementary Table S1
provides more details about the usability of each method while
Supplementary Table S2 provides the input and workflow.

Methods
In general, GRN inference methods aim at capturing the network
dynamics that explain the underlying regulatory states in dif-
ferent cellular compartments and conditions. Each GRN infer-
ence model follows an explicit assumption about the regulatory
dynamics that can be observed through the changes in expres-
sion data. The overall workflow of GRN inference methods is pre-
sented in Figure 1. The input includes a scRNA-seq expression
matrix in which rows represent genes and columns represent
cells (or vice versa). Due to computational limitation, all GRN
methods start with a gene filtering step, which narrows the
analysis to genes with high variability or genes that are of users’
interest (pre-defined genes). Depending on the assumption of
the regulatory dynamics and the inference technique used, the
filtered data are then transformed into necessary structure/
format, such as binary values (boolean model), pseudo-time
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f(x) : Rn → [0,1]

Many algorithms

kNN

Naive Bayes

Decision Tree

Random Forest

Support Vector Machine

Deep Learning (Neural Networks)
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Local Model (One-class approach) 
for each Transcription Factor ( ), learn a 
score  function to assess the 
similarity with the set of known positive 
expression profiles. Then classify the 
unknown genes decreasing score.

tfi
Stfi(e(Gi))

Example: one-class learning approach for local model

For a given TF, let P ⇢ [1, n] be the set of genes known to be
regulated by it
From the expression profiles (Xi)i2P , estimate a score s(X ) to
assess which expression profiles X are similar
Then classify the genes not in P by decreasing score
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Example: one-class learning approach for local model

For a given TF, let P ⇢ [1, n] be the set of genes known to be
regulated by it
From the expression profiles (Xi)i2P , estimate a score s(X ) to
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